
Domain Name System (DNS)

Joe	 Abley	
AfNOG	 Workshop,	 AIS	 2015,	 Tunis

Session 3: Authoritative
Name Server using BIND9

Recap

! DNS is a distributed database
! Stub asks Resolver for information
! Resolver traverses the DNS delegation tree to

find Authoritative nameserver which has the
information requested

! Bad configuration of authoritative servers can
result in broken domains

DNS Replication

! For every domain, we need more than one
authoritative nameserver with the same
information (RFC 2182)

! Data is entered in one server (Master) and
replicated to the others (Slave(s))

! Outside world cannot tell the difference
between master and slave
– NS records are returned in random order for equal

load sharing
! Used to be called "primary" and "secondary"

Slaves connect to Master to retrieve
copy of zone data

! The master does not "push" data to the slaves

Master

Slave

Slave

When does replication take place?

! Slaves poll the master periodically - called the
"Refresh Interval" - to check for new data
– Originally this was the only mechanism

! With new software, master can also notify the
slaves when the data changes
– Results in quicker updates

! The notification is unreliable (e.g. network might
lose a packet) so we still need checks at the
Refresh Interval

Serial Numbers

! Every zone file has a Serial Number
! Slave will only copy data when this number

INCREASES
– Periodic UDP query to check Serial Number
– If increased, TCP transfer of zone data

! It is your responsibility to increase the serial
number after every change, otherwise slaves
and master will be inconsistent

Recommended serial number
format: YYYYMMDDNN

! YYYY = year
! MM = month (01-12)
! DD = day (01-31)
! NN = number of changes today (00-99)

– e.g. if you change the file on 23rd April 2007, the
serial number will be 2008052700. If you change it
again on the same day, it will be 2008052701.

Serial Numbers: Danger 1

! If you ever decrease the serial number, the
slaves will never update again until the serial
number goes above its previous value

! RFC1912 section 3.1 explains a method to fix
this problem

! At worst, you can contact all your slaves and
get them to delete their copy of the zone data

Serial Numbers: Danger 2

! Serial no. is a 32-bit unsigned number
! Range: 0 to 4,294,967,295
! Any value larger than this is silently truncated
! e.g. 20080527000 (note extra digit)

= 4ACE48698 (hex)
= ACE48698 (32 bits)
= 2900657816

! If you make this mistake, then later correct it,
the serial number will have decreased

Configuration of Master

! /etc/namedb/named.conf points to zone file
(manually created) containing your RRs

! Choose a logical place to keep them
– e.g. /usr/local/etc/namedb/master/tiscali.co.uk
– or /usr/local/etc/namedb/master/uk.co.tiscali
zone "example.com" {
 type master;
 file "master/example.com";
 allow-transfer { 192.188.58.126;
 192.188.58.2; };
};

Configuration of Slave

! named.conf points to IP address of master
and location where zone file should be
created

! Zone files are transferred automatically
! Don't touch them!

zone "example.com" {
 type slave;
 masters { 192.188.58.126; };
 file "slave/example.com";
 allow-transfer { none; };
};

Master and Slave

! It's perfectly OK for one server to be Master for
some zones and Slave for others

! That's why we recommend keeping the files in
different directories
– /usr/local/etc/namedb/master/
– /usr/local/etc/namedb/slave/

! (also, the slave directory can have appropriate
permissions so that the daemon can create files)

allow-transfer { ... }

! Remote machines can request a transfer of the
entire zone contents

! By default, this is permitted to anyone
! Better to restrict this
! You can set a global default, and override this

for each zone if required
options {
 allow-transfer { 127.0.0.1; };
};

Structure of a zone file
! Global options

– $TTL 1d
– Sets the default TTL for all other records

! SOA RR
– "Start Of Authority"
– Housekeeping information for the zone

! NS RRs
– List all the nameservers for the zone, master and

slaves
! Other RRs

– The actual data you wish to publish

Format of a Resource Record

! One per line (except SOA can extend over several
lines)

! If you omit the Domain Name, it is the same as the
previous line

! TTL shortcuts: e.g. 60s, 30m, 4h, 1w2d
! If you omit the TTL, uses the $TTL default value
! If you omit the Class, it defaults to IN
! Type and Data cannot be omitted
! Comments start with SEMICOLON (;)

www 3600 IN A 212.74.112.80
Domain TTL Class Type Data

Shortcuts

! If the Domain Name does not end in a dot, the
zone's own domain ("origin") is appended

! A Domain Name of "@" means the origin itself
! e.g. in zone file for example.com:

– @ means example.com.
– www means www.example.com.

If you write this...

... it becomes this

$TTL 1d
@ SOA (...)
 NS ns0
 NS ns0.as9105.net.
; Main webserver
www A 212.74.112.80
 MX 10 mail

example.com. 86400 IN SOA (...)
example.com. 86400 IN NS ns0.example.com.
example.com. 86400 IN NS ns0.as9105.net.
www.example.com. 86400 IN A 212.74.112.80
www.example.com. 86400 IN MX 10 mail.example.com.

Format of the SOA record

$TTL 1d

@ 1h IN SOA ns1.example.net. joe.pooh.org. (
 2004030300 ; Serial
 8h ; Refresh
 1h ; Retry
 4w ; Expire
 1h) ; Negative

 IN NS ns1.example.net.
 IN NS ns2.example.net.
 IN NS ns1.othernetwork.com.

Format of the SOA record
! ns1.example.net.

– hostname of master nameserver
! jabley.hopcount.ca.

– E-mail address of responsible person, with "@"
changed to dot, and trailing dot

! Serial number
! Refresh interval

– How often Slave checks serial number on Master
! Retry interval

– How often Slave checks serial number if the
Master did not respond

Format of the SOA record (cont)

! Expiry time
– If the slave is unable to contact the master for this

period of time, it will delete its copy of the zone data
! Negative / Minimum

– Old software used this as a minimum value of the
TTL

– Now it is used for negative caching: indicates how
long a cache may store the non-existence of a RR

! RIPE-203 has recommended values
– http://www.ripe.net/ripe/docs/dns-soa.html

Format of NS records
! List all authoritative nameservers for the zone

- master and slave(s)
! Must point to HOSTNAME not IP address
$TTL 1d

@ 1h IN SOA ns1.example.net. joe.pooh.org. (
 2004030300 ; Serial
 8h ; Refresh
 1h ; Retry
 4w ; Expire
 1h) ; Negative

 IN NS ns1.example.net.
 IN NS ns2.example.net.
 IN NS ns1.othernetwork.com.

Format of other RRs

! IN A 1.2.3.4
! IN MX 10 mailhost.example.com.

– The number is a "preference value". Mail is
delivered to the lowest-number MX first

– Must point to HOSTNAME not IP address
! IN CNAME host.example.com.
! IN PTR host.example.com.
! IN TXT "any text you like"

When you have added or changed a
zone file:

! Remember to increase the serial number!
! named-checkzone example.com \  
 /usr/local/etc/namedb/master/
example.com
– bind 9 feature
– reports zone file syntax errors; correct them!

! named-checkconf
– reports errors in named.conf

! rndc reload

– or: rndc reload example.com
! tail /var/log/messages

These checks are ESSENTIAL

! If you have an error in named.conf or a zone
file, named may continue to run but will not be
authoritative for the bad zone(s)

! You will be lame for the zone without realising it
! Slaves will not be able to contact the master
! Eventually (e.g. 4 weeks later) the slaves will

expire the zone
! Your domain will stop working

Other checks you can do
! dig +norec @x.x.x.x example.com. soa

– Check the AA flag
– Repeat for the master and all the slaves
– Check the serial numbers match

! dig @x.x.x.x example.com. axfr

– "Authority Transfer"
– Requests a full copy of the zone contents over TCP,

as slaves do to master
– This will only work from IP addresses listed in the

allow-transfer {...} section

So now you have working
authoritative nameservers!

! But none of this will work until you have
delegation from the domain above

! That is, they put in NS records for your domain,
pointing at your nameservers

! You have also put NS records within the zone
file

! The two sets should match

Any questions?

?

TOP TEN ERRORS in authoritative
nameservers

! All operators of auth nameservers should read
RFC 1912
– Common DNS Operational and Configuration Errors

! And also RFC 2182
– Selection and Operation of Secondary DNS servers

1. Serial number errors

! Forgot to increment serial number
! Incremented serial number, then decremented it
! Used serial number greater than 232

! Impact:
– Slaves do not update
– Master and slaves have inconsistent data
– Caches will sometimes get the new data and

sometimes old - intermittent problem

2. Comments in zone files starting
'#' instead of ';'

! Syntax error in zone file
! Master is no longer authoritative for the zone
! Slaves cannot check SOA
! Slaves eventually expire the zone, and your

domain stops working entirely
! Use "named-checkzone"
! Use "tail /var/log/messages"

3. Other syntax errors in zone files

! e.g. omitting the preference value from MX
records

! Same impact

4. Missing the trailing dot

; zone example.com.
@ IN MX 10 mailhost.example.com

becomes

@ IN MX 10 mailhost.example.com.example.com.

; zone 2.0.192.in-addr.arpa.
1 IN PTR host.example.com

becomes

1 IN PTR host.example.com.2.0.192.in-addr.arpa.

5. NS or MX records pointing to IP
addresses

! They must point to hostnames, not IP
addresses

! Unfortunately, a few mail servers do accept IP
addresses in MX records, so you may not see a
problem with all remote sites

6. Slave cannot transfer zone from
master

! Access restricted by allow-transfer {...} and
slave not listed

! Or IP filters not configured correctly
! Slave will be lame (non-authoritative)

7. Lame delegation

! You cannot just list any nameserver in NS
records for your domain

! You must get agreement from the nameserver
operator, and they must configure it as a slave
for your zone

! At best: slower DNS resolution and lack of
resilience

! At worst: intermittent failures to resolve your
domain

8. No delegation at all

! You can configure "example.com" on your
nameservers but the outside world will not send
requests to them until you have delegation

! The problem is hidden if your nameserver is
acting both as your cache and as authoritative
nameserver

! Your own clients can resolve
www.example.com, but the rest of the world
cannot

9. Out-of-date glue records

! See later

10. Not managing TTL correctly
during changes

! e.g. if you have a 24 hour TTL, and you swing
www.example.com to point to a new server,
then there will be an extended period when
some users hit one machine and some hit the
other

! Follow the procedure:
– Reduce TTL to 10 minutes
– Wait at least 24 hours
– Make the change
– Put the TTL back to 24 hours

Practical

! Create a new domain
! Set up master and slave nameservice
! Obtain delegation from the domain above
! Test it

