Domain Name System (DNS)

Session 2: Resolver Operation
and debugging

Joe Abley
AfNOG Workshop, AlS 2015, Tunis

DNS Resolver Operation

How Resolvers Work (1)

- |f we've dealt with this query before recently,
answer is already in the cache - easy!

Query
>
<
Response

What if the answer is not in the
cache?

- DNS is a distributed database: parts of the tree
(called "zones") are held in different servers

- They are called "authoritative" for their
particular part of the tree

- |t is the job of a caching nameserver to locate
the right authoritative nameserver and get back

the result

- It may have to ask other nameservers first to
locate the one it needs

How caching NS works (2)

2 -
1
Query
- : 3 -
>
4 <
Response
N\ 4
5
A -

How does it know which
authoritative nameserver to ask?

- |t follows the hierarchical tree structure

- e.g. to query "www.tiscali.co.uk™

. (root)

/

uk

o
/

tiscali.co.uk <

< 1. Ask here

2. Ask here

3. Ask here

4., Ask here

Intermediate nameservers return
"NS" resource records

- "I don't have the answer, but try these other
nameservers instead"

- Called a REFERRAL

- Moves you down the tree by one or more levels

Eventually this process will either:

- Find an authoritative nameserver which knows
the answer (positive or negative)

- Not find any working nameserver: SERVFAIL

- End up at a faulty nameserver - either cannot
answer and no further delegation, or wrong
answer!

- Note: the resolver may happen also to be an authoritative
nameserver for a particular query. In that case it will
answer immediately without asking anywhere else. We
will see later why it's a better idea to have separate
machines for caching and authoritative nameservers

How does this process start?

- Every caching nameserver is seeded with a list
of root servers

/etc/unbound/unbound.conf.d/root—hints.confl

/var/lib/unbound/named. root

Where did named.root come from?

- ftp://ftp.internic.net/domain/named.cache

- Worth checking every 6 months or so for
updates

Demonstration

- dig +trace www.tiscali.co.uk.

- Instead of sending the query to the cache, "dig
+trace" traverses the tree from the root and
displays the responses it gets

- dig +traceis a bind 9 feature
- useful as a demo but not for debugging

Distributed systems have many
points of failure!

- So each zone has two or more authoritative

nameservers for resilience

- They are all equivalent and can be tried in any
order

rying stops as soon as one gives an answer
- Also helps share the load

- The root servers are very busy

— There are currently 13 of them

— Individual root servers are distributed all over the
place using anycast

Caching reduces the load on auth
nameservers

- Especially important at the higher levels: root
servers, GTLD servers (.com, .net ...) and
cclLDs

- All intermediate information is cached as well
as the final answer - so NS records from
REFERRALS are cached too

Example 1: www.tiscali.co.uk (on an
empty cache)

www.tiscali.co.uk (A)

referral to 'uk' nameservers

www.tiscali.co.uk (A)

referral to 'tiscali.co.uk' nameservers

www.tiscali.co.uk (A)

\4

Answer: 212.74.101.10

Example 2: smtp.tiscali.co.uk (after
previous example)

Previous referrals
retained in cache

smtp.tiscali.co.uk (A)
> -
Answer: 212.74.114.61

Caches can be a problem if data
becomes stale

- |f caches hold data for too long, they may give
out the wrong answers if the authoritative data

changes

- |f caches hold data for too little time, it means
iIncreased work for the authoritative servers

The owner of an auth server
controls how their data is cached

- Each resource record has a "Time To
Live" (TTL) which says how long it can be kept

In cache

he SOA record says how long a negative
answer can be cached (i.e. the non-existence of

a resource record)

- Note: the cache owner has no control - but they
wouldn't want it anyway

A compromise policy

- Setafairlylong TTL - 1 or 2 days

- When you know you are about to make a
change, reduce the TTL down to 10 minutes

- Wait 1 or 2 days BEFORE making the change
- After the change, put the TTL back up again

Any questions?

DNS Debugging

What sort of problems might occur
when resolving names in DNS?

- Remember that following referrals is in general
a multi-step process

- Remember the caching

(1) One authoritative server is down
or unreachable
- Not a problem: timeout and try the next
authoritative server

- Remember that there are multiple authoritative
servers for a zone, so the referral returns multiple
NS records

(2) *ALL* authoritative servers are
down or unreachable!

- This is bad; query cannot complete

- Make sure all nameservers not on the same
subnet (switch/router failure)

- Make sure all nameservers not in the same
building (power failure)

- Make sure all nameservers not even on the

same Internet backbone (failure of upstream
link)

- For more detail read RFC 2182

(3) Referral to a nameserver which
IS not authoritative for this zone

- Bad error. Called "Lame Delegation”

- Query cannot proceed - server can give neither
the right answer nor the right delegation

- Typical error: NS record for a zone points to a
caching nameserver which has not been set up
as authoritative for that zone

- Or: syntax error in zone file means that
nameserver software ignores it

(4) Inconsistencies between
authoritative servers

. |f auth servers don't have the same information

then you will get different information depending
on which one you picked (random)

- Because of caching, these problems can be
very hard to debug. Problem is intermittent.

(5) Inconsistencies in delegations

- NS records in the delegation do not match NS

records in the zone file (we will write zone files
later)

- Problem: if the two sets aren't the same, then
which is right?
- Leads to unpredictable behaviour

— Caches could use one set or the other, or the union
of both

(6) Mixing caching and authoritative

nameservers

- Consider when caching nameserver contains
an old zone file, but customer has transferred
their DNS somewhere else

- Caching nameserver responds immediately
with the old information, even though NS
records point at a different ISP's authoritative
nameservers which hold the right information!

- This is a very strong reason for having
separate machines for authoritative and
caching NS

- Another reason is that an authoritative-only NS has a
fixed memory usage

(7) Inappropriate choice of
parameters

- e.g. I'TL set either far too short or far too long

These problems are not the fault of
the resolver!

- They all originate from bad configuration of the
AUTHORITATIVE name servers

- Many of these mistakes are easy to make but
difficult to debug, especially because of caching

- Running a resolver is easy; running
authoritative nameservice properly requires
great attention to detall

- But nothing makes the helpdesk phone ring
quite like a broken resolver

How to debug these problems?

- We must bypass caching

- We must try "all* N servers for a zone (a
caching nameserver stops after one)

- We must bypass recursion to test all the
intermediate referrals

- "dig +norec" is your friend

g tnores 1234 feobar.a |
/N

How to interpret responses (1)

- Look for "status: NOERROR"

- "flags ... aa" means this is an authoritative
answer (i.e. not cached)

- "ANSWER SECTION" gives the answer
- If you get back just NS records: it's a referral

How to interpret responses (2)

"status: NXDOMAIN"

- OK, negative (the name does not exist). You should
get back an SOA

"status: NOERROR" with an empty answer
section

- OK, negative (name exists but no RRs of the type
requested). Should get back an SOA

- Other status may indicate an error

- Look also for Connection Refused (DNS server
IS not running or doesn't accept queries from
your |P address) or Timeout (no answer)

How to debug a domain using
"dig +norec” (1)

1. Start at any root server: [a-m].root-

Remember the trailing dots!

1. For a referral, note the NS records returned
2. Repeat the query for *all* NS records

3. Go back to step 2, until you have got the final
answers to the query

1.

How to debug a domain using
"dig +norec” (2)

Check all the results from a group of
authoritative nameservers are consistent with
each other

Check all the final answers have "flags: aa"

Note that the NS records point to names, not
|IP addresses. So now check every NS record
seen maps to the correct IP address using the
same process!!

How to debug a domain using
"dig +norec" (3)

- Tedious, requires patience and accuracy, but it
pays off

- Learn this first before playing with more
automated tools

- Such as:

+ http://www.squish.net/dnscheck/
* http://www.zonecheck.fr/

- These tools all have limitations, none is perfect

Practical

Worked examples

Building your own resolver

- We will be using unbound, software written by
NLNet Labs, www.nlnetlabs.nl

- There are other options, e.g. BIND9

- Unbound is a dedicated resolver, and runs on most
server operating systems

- Debian: apt-get install unbound

- Question: what sort of hardware would you
choose when building a resolver?

Improving the configuration

- Limit client access to your own |IP addresses
only

— No reason for other people on the Internet to be
using your cache resources

- Make cache authoritative for queries which
should not go to the Internet

— localhost - A 127.0.0.1
- 1.0.0.127.in-addr.arpa — PTR localhost
- RFC 1918 addresses (10/8, 172.16/12, 192.168/16)

- Gives quicker response and saves sending
unnecessary queries to the Internet

Access control

/etc/unbound/unbound.conf.d/clients.confl

Managing a resolver

service unbound start
unbound-control status

unbound-control reload

- After config changes; causes less disruption than
restarting the daemon

unbound-control dump cache

- dumps current cache contents to standard out
(redirect to a file if you want the output in a file)

unbound-control flush

- Destroys the cache contents from the root all the
way down; don't do on a live system!

Absolutely critical!

- tail /var/log/syslog
— after any nameserver changes and reload/restart

- A syntax error may result in a nameserver
which is running, but not in the way you wanted

- check your log files

Practical

- Build a resolver
- Examine its operation

