
Exim Practical

Objectives

Part 1 is building and installing Exim.

! Install Exim from ports
! Replace Sendmail with Exim

Part 2 is running basic tests. You don't need to modify the Exim configuration to do this.

! Test a standard installation and default configuration
! Inspect and manage the mail queue
! Check relay control
! Process log data

Part 3 involves some simple modification of the runtime configuration.

! Modify the runtime configuration to send undeliverable mail to postmaster

Part 4 sets up your host as a mail relay

! Allow relaying from another host
! Allow relaying to another domain

Common mistakes

In past workshops, these are the most common mistakes that have been made:

! Doing everything as root. You only need to be root to install Exim and change its
configuration. Otherwise, you should do everything under your normal login. In
the sample commands, the command prompt is shown as # for commands that
must be run as root, and $ otherwise.

In particular, running email tests as root is a bad idea, because root has privileges.
You want to test that Exim is working when an ordinary, unprivileged user calls it.

! Forgetting the dot that terminates a message. When you type a message directly
into Exim, it needs a line containing just a dot to terminate it. Until you type that
line, all input is taken as part of the message.

! Adding dots to email domains. You should now have got used to inserting trailing
dots in fully qualified domains in DNS zones. Unfortunately, in email
configurations, trailing dots are not used and will cause problems if you use
them.

Part 1. Installing Exim

As with most software under FreeBSD, you have three choices on how to install it:

1. Install a binary package from the CD-ROM or an FTP server
2. Build from the ports collection
3. Download the source code and compile and install it yourself following the

author's instructions.

Here we are going to install Exim from ports. It's a straightforward process, easier than
compiling it yourself. If you bring your ports collection up to date using cvsup then you
will be building the latest version of Exim (whereas the binary package on the CD-ROM
may be an older version).

Build and install from ports

Proceed as follows:

portinstall exim
 ... a lot of stuff is displayed ...
rehash (Needed if you are using the C shell)

You should end up with the Exim program in /usr/local/sbin/exim and a default
configuration file in /usr/local/etc/exim/configure.

(ASIDE: There are optional extra features you can build into exim when compiling it. For
example, "portinstall -m WITH_MYSQL=yes exim " would build exim with MySQL
support, so that mailboxes could be looked up in a MySQL database. However, the
defaults in the ports collection are fine for what we need. Look at the comments in
/usr/ports/mail/exim/Makefile to see the options available).

If a sendmail daemon is running, kill it off. Use ps with grep to find it. (Modern versions
of sendmail may have two or more processes running)

ps auxw | grep sendmail
/etc/rc.d/sendmail stop
vi /etc/rc.conf
... set this value:
sendmail_enable="NONE"

Note that the FreeBSD port builds exim to run using user "mailnull" and group "mail".
You should now arrange for your personal (non-root) account to be in the mail group so
that you can be an administrator for Exim.

pw usermod username -G mail,wheel
... if you forget to add the wheel, pw will remove you from the wheel group
grep mail /etc/group (To check)

Check the documentation

Before moving on, make sure you can access the Exim documentation. It is available as
a plain-text file which can be read or searched using the normal Unix tools or a text
editor:

$ less /usr/local/share/doc/exim/spec.txt

(There is also a separate port available, mail/exim-doc-html, which installs the Exim
documentation in HTML format for reading with a web browser. Or it's available on-line
at http://www.exim.org/)

Test that Exim has been installed by running:

$ exim -bV

which should tell you Exim's version number and some other information about which
features are included.

Replace Sendmail with Exim

All the MUAs call /usr/sbin/sendmail to pass messages to the MTA. We want them to
call exim instead of sendmail, but leave sendmail installed so that if there is any existing
mail in sendmail's queue, it can be flushed later.

FreeBSD lets us choose a new MTA by setting values in the /etc/mail/mailer.conf file.
We redirect the programs 'sendmail', 'send-mail' and 'mailq' to point to exim.

cd /etc/mail
vi mailer.conf
... change these three lines:
sendmail /usr/local/sbin/exim
send-mail /usr/local/sbin/exim
mailq /usr/local/sbin/exim
... you can leave newaliases, hoststat and purgestat unchanged

Now try that basic test again, but this time using the standard path name:

$ /usr/sbin/sendmail -bV

You should get the same output as before, which shows that Exim is now being used
instead of Sendmail.

Part 2. Testing Exim

If you are doing a real installation on a live system, you might want to work on the
configuration and do lots of testing before removing Sendmail and replacing it with Exim.

Test the standard installation and configuration

Make sure you substitute a real local user name for username in what follows.
Remember, you should not be root when running these tests.

First, check what Exim will do with a local address:

$ exim -bt username

This tests the delivery routing for a local account. See what output you get.

Try with a non-existent local user and see what happens:

$ exim -bt junkjunkjunk

Try something that is in /etc/aliases:

$ exim -bt postmaster

Exim will not normally deliver mail to a root mailbox (for security reasons) so what
people usually do is to make root an alias for the sysadmin. In FreeBSD, all the default
aliases point to root. Therefore, you should add a new alias to /etc/aliases. Find this
commented-out line:

root: me@mydomain

and change it (remembering to remove the initial '#') to:

root: username

Now try this again:

$ exim -bt postmaster

Now we are going to try a real local delivery. You can pass a message directly to Exim
without using an MUA:

$ exim -v -odf username
This is a test message.
.

Note: the message is terminated by a line that just contains a dot. Be sure to type it!
(Alternatively, you can send ``end of file'' by pressing CTRL-D.)

The -v option turns on user verification output, which shows you copies of Exim's log
lines.

The -odf option requests `foreground' delivery, which means that the exim command
won't return until the delivery is complete. (This avoids your shell prompt getting mixed
up with Exim's output.)

Check what is in Exim's logs:

$ cat /var/log/exim/mainlog
$ cat /var/log/exim/paniclog

The panic log should normally be empty, and if nothing has ever been written to it, it will
not even exist. Tip: On a live system it is helpful to set up a cron job that mails you a
warning if it ever finds a non-empty panic log.

If you get a permission error, make sure that your username is in the 'mail' group, then
logout and login again to become a member of that group.

If the delivery succeeded, you should see two lines in the main log, one containing <=
for the message arriving, and one containing => for the delivery.

Now go check the local user's mailbox:

$ ls -l /var/mail/username
$ cat /var/mail/username

If the delivery didn't succeed, you need to find out why. If the information in the log
doesn't help, you can try the delivery again, with debugging turned on:

$ exim -d -odf username
<there will be output from Exim here>
This is another test message.
.

The -d option turns on debugging, which gives a lot more information than -v. You need
to be an Exim administrator to use -d. If you get a `Permission denied' error, check that
you are a member of the "mail" group.

If you are logged on as username, you can use the mail command to read the mail in the
usual way. You could also try sending a message from the mail command.

The next thing is to test whether Exim can send to a remote host. The speed of this may
vary, depending on the state of the network connection. In what follows, replace
user@remote.host with your home email address.

First, check that Exim can route to the address:

$ exim -bt user@remote.host

Now send a message to the remote address:

$ exim -v -odf user@remote.host
This is a test message.
.

This time, the -v option causes Exim to display the SMTP dialogue as well as the log
lines. If you can, check that the message arrived safely. If there are problems, see if you
can figure out what went wrong and why.

You won't be able to receive messages from a remote host until you start the Exim
daemon:

exim -bd -q30m

The -bd option causes the daemon to listen for incoming SMTP calls, and the -q30m
option causes it to start a queue runner process every 30 minutes. On a live system,
starting the daemon should happen automatically on a reboot, by putting the following
entry in /etc/rc.conf :

exim_enable="YES"

Once you've done this, you can use /usr/local/etc/rc.d/exim.sh {start|stop|status} as
usual.

Use telnet to check that the daemon is accepting SMTP calls:

$ telnet localhost 25

You should see an Exim greeting message. Use QUIT to exit.

Now check that a remote host can send a message to your host, and see how Exim logs
what happens. If that succeeds, you have a working basic installation correctly installed.

Try sending to an invalid address from a remote host, and see what error message you
get, and how Exim logs this case. Look in both mainlog and rejectlog.

Queue management tests

There are several command line options for doing things to messages.

To put a message on the queue without its being delivered, run

$ exim -odq address1 address2 ...
Test message.
.

The message stays on the queue until a queue runner process notices it.

List the messages on the queue:

$ exim -bp

Do a manual queue run, with minimal verification output:

$ exim -v -q

(Without -v you won't see any output at all on the terminal, but there will be entries in the
log.)

Checking relay control

To demonstrate that Exim will relay by default via the loopback interface, try the following
sequence of SMTP commands. Wait for Exim to respond to each command before
typing the next one. Substitute the number of your pc for nn:

$ telnet 127.0.0.1 25
ehlo localhost
mail from:<username@pcX.sae.ws.afnog.org>
rcpt to:<username@pcX.sae.ws.afnog.org>
rcpt to:<user@some.remote.domain>

You should get an OK response to all the SMTP commands. Type `quit' to end the SMTP
session without actually sending a message.

Now try the same thing, but use your host's IP address instead of 127.0.0.1.

$ telnet xx.xx.xx.nn 25
ehlo localhost
mail from:<username@pcX.sae.ws.afnog.org>
rcpt to:<username@pcX.sae.ws.afnog.org>
rcpt to:<user@some.remote.domain>

In this case, you should get the error message

550 relay not permitted

for the second RCPT command, which is the one that is trying to relay. The first RCPT
command should be accepted, because it specifies a local delivery. You could also try
telnetting from an external host and running the same check.

Processing log data

Run exigrep to extract all information about a certain message, or a certain user's
messages, or messages for a certain domain. For example:

$ exigrep username /var/log/exim/mainlog

That extracts all the log information for all messages that have any log line containing
`username'. It's a Perl pattern match, so you can use Perl regular expressions.

To extract simple statistics from a log, run

$ eximstats /var/log/exim/mainlog | more

There are options for selecting which bits you don't want. Details are in the manual. If
you have time, experiment with the options for outputting the statistics as HTML.

Part 3. Changing the configuration

To change Exim's runtime configuration, you must edit /usr/local/etc/exim/configure
and then "HUP" the Exim daemon (as root) - that is, send it a HUP (HangUP) signal. The
daemon stores its process id (pid) in a file, in order to make this easy. Using this signal is
less disruptive than completely stopping and starting the daemon. You can use these
commands to send the signal:

cat /var/run/exim.pid
kill -HUP nnnn

where nnnn is the pid from the previous line. Alternatively, you can use the startup script
installed by the port to do this for you:

/usr/local/etc/rc.d/exim.sh reload

You can confirm that the daemon has restarted by checking the main log.

The following sections contain some suggestions for configuration modifications that you
can try, just to get a feel for how the configuration file works. You do not have to stick
rigidly to these examples; use different domain names or user names if you want to.

Adding more local domains

Edit the configuration, and change the local_domains setting so that it looks like this:

domainlist local_domains = @ : pcX.sae.ws.afnog.org

where nn is the number of your host. Remember to HUP the daemon afterwards. Now
you have a new local domain. Try sending it some mail:

$ mail yourname@pcX.sae.ws.afnog.org

Check that it arrives in your mailbox.

If you want to add a lot of domains, or if you want to keep changing them, it is easier to
keep the list of domains in a file instead of in the Exim configuration. (You can also keep
them in several different kinds of database, such as LDAP or MySQL, but we don't cover
that in this workshop.)

4. Relaying from another host

In section 2 above, there is test to demonstrate that relaying is blocked if you connect to
your host's IP address.

We are now going to remove this block by changing a line in the configuration to let all
the classroom hosts relay through your host. Change this line:

hostlist relay_from_hosts = 127.0.0.1

to

hostlist relay_from_hosts = 127.0.0.1 : 196.200.218.0/24

where 196.200.218.0/24 is the classroom network. (Don't forget to HUP the daemon.)
Then try the telnet test from section 2 again. This time it should accept the request to
relay. Ask one of the other students to try relaying through your host -- it should work. If
you can, telnet from a host outside the classroom network, and confirm that relaying is
still blocked.

IPv6 has ':' as the separator rather than '.' so if you need to specify our network in
relay_from_hosts you'd need to double the colons i.e

hostlist relay_from_hosts = 127.0.0.1: 196.200.218.0/24 : \
 2001::4348::0::218::196::200::218::0/64

The '\' at the end of the line is how in exim you can have a long line continued on the
next one. Exim escapes all the whitespace up to the next non space character and treats
it like it was all on the same line.

Alternatively you can change what the list separator is in exim using the '<' operator like

hostlist relay_from_hosts = <; 127.0.0.1; 196.200.218.0/24 \
 2001:4348:0:218:196:200:218:0/64

What that line does is tell exim that the different entries will be separated with
semicolons and that way you can type your IPv6 addresses without further hustle.

Allowing relaying to specific domains

The default configuration contains the line

domainlist relay_to_domains =

This defines domains to which your host will relay, wherever the message comes from.
As you can see, the default list is empty, so no domains match. Add some domains to
this line. For example, add the domain of your home email where I've put
“somewhere.com”

domainlist relay_to_domains = somewhere.com
Now we need to test that Exim will indeed relay to those domains (but not to others) from
a host that does not match relay_from_hosts. Exim has a testing facility that lets you
simulate an SMTP call from a remote host. Run it like this:

$ exim -bh 192.168.1.1

You will see some debugging output, and then an SMTP greeting line. Now type SMTP
commands, waiting for a response between each one:

ehlo testhost
mail from:<username@pcX.sae.ws.afnog.org>
rcpt to:<user@somewhere.com>
rcpt to:user @ some.other.domain
quit

