
Security & Cryptographic
Methods

Unix System Administration

May 28, 2008
Rabat, Morocco

Hervey Allen

NSRC@AfNOG '08
Rabat

Reminder: Core Security Principals

What are they?

(1)-- Confidentiality

(2)-- Integrity

(3)-- Authentication
 - Access Control

- Verification

(4)-- Availability

NSRC@AfNOG '08
Rabat

Cryptographic Methods

Critical for confidentiality, integrity, and
authentication.

Indirectly they lead to better availability.

What are some methods and tools?

ssh
ssl

ciphersdigital certificates

digital signatures
md5/sha1

pgp...

public keysprivate keys hashes

des/3des/blowfish

...Do you have any more?

NSRC@AfNOG '08
Rabat

What We'll Cover

● Digital signatures
● TLS/SSL
● SSH
● PGP

NSRC@AfNOG '08
Rabat

Public Key Cryptosystems are
Important

● But they require a lot of computation
(expensive in CPU time)

● So we use some tricks to minimise the amount
of data which is encrypted

NSRC@AfNOG '08
Rabat

When encrypting (review):

Use a symmetric cipher with a random key (the
"session key"). Use a public key cipher to encrypt
the session key and send it along with the
encrypted document.

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private)(public)

NSRC@AfNOG '08
Rabat

When authenticating (review):

Take a hash of the document and encrypt
only that. An encrypted hash is called a
"digital signature"

k2 k1

digital
signature

COMPARE

hash hash

(public)(private)

NSRC@AfNOG '08
Rabat

Digital Signatures have many uses, for
example:

● E-commerce. An instruction to your bank to transfer
money can be authenticated with a digital signature.
Legislative regimes are slow to catch up

● A trusted third party can issue declarations such as "the
holder of this key is a person who is legally known as
Alice Hacker"

Like a passport binds your identity to your face

● Such a declaration is called a "certificate"

● You only need the third-party's public key to check the
signature

NSRC@AfNOG '08
Rabat

Do public keys really solve the key
distribution problem?

● Often we want to communicate securely with a
remote party whose key we don't know

● We can retrieve their public key over the network

● But what if there's someone in between
intercepting our traffic?

public key

NSRC@AfNOG '08
Rabat

The "man-in-the-middle" Attack

➔ Passive sniffing is no problem

➔ But if they can modify packets, they can substitute a
different key

➔ The attacker uses separate encryption keys to talk to both
sides

➔ You think your traffic is secure, but it isn't!

key 1 key 2

Attacker sees all traffic in plain text - and can modify it!

NSRC@AfNOG '08
Rabat

TLS/SSL – Digital Certificates

NSRC@AfNOG '08
Rabat

Digital Certificates can solve the man-in-the-
middle problem

● Problem: I have no prior knowledge of the remote
side's key, so cannot tell if a different one has been
substituted

● But maybe someone else does

● A trusted third party can vouch for the remote side
by signing a certificate which contains the remote
side's name & public key

● I can check the validity of the certificate using the
trusted third party's public key

NSRC@AfNOG '08
Rabat

Example: TLS (SSL) web server with
digital certificate

● I generate a private key on my webserver

● I send my public key plus my identity (my
webserver's domain name) to a certificate authority
(CA)

● The CA manually checks that I am who I say I am,
i.e. I own the domain

● They sign a certificate containing my public key, my
domain name, and an expiration date

● I install the certificate on my web server

NSRC@AfNOG '08
Rabat

When a client's web browser connects
to me using HTTPS:

● They negotiate an encrypted session with me, during
which they learn my public key

● I send them the certificate

● They verify the certificate using the CA's public key, which
is built-in to the browser

● If the signature is valid, the domain name in the URL
matches the domain name in the certificate, and the
expiration date has not passed, they know the connection
is secure

● (Q: why is there an expiration date?)

NSRC@AfNOG '08
Rabat

The security of TLS depends on:

● Your webserver being secure
● So nobody else can obtain your private key

● The CA's public key being in all browsers

● The CA being well managed
How carefully do they look after their own private keys?

● The CA being trustworthy
Do they vet all certificate requests properly?

Could a hacker persuade the CA to sign their key pretending to
be someone else? What about a government?

Do you trust them? Why?

NSRC@AfNOG '08
Rabat

Testing TLS (SSL) Applications
● There is an equivalent of telnet you can use: openssl s_client

● It opens a TCP connection, negotiates TLS, then lets you
type data

$ openssl s_client -connect afnog.org:443
CONNECTED(00000003)
depth=1 /C=US/ST=Washingron/L=Bainbridge Island/O=RGnet/PSGnet/OU= \
Engineering/CN=RGnet Root CA/emailAddress=randy@psg.com
verify error:num=19:self signed certificate in certificate chain
verify return:0
...
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
...

And, at the end you see:

Verify return code: 19 (self signed certificate in certificate chain)

NSRC@AfNOG '08
Rabat

Limitations of s_client

● Works only for protocols which use TLS from the
very beginning of the connection

These protocols are identified by using a different port number to
the non-encrypted version

(HTTP port 80), HTTPS port 443

(POP3 port 110), POP3S port 995

● Other protocols start unencrypted and then
"upgrade" the connection to encrypted on request

e.g. SMTP has a "STARTTLS" command

s_client is not usable for these

NSRC@AfNOG '08
Rabat

SSH

NSRC@AfNOG '08
Rabat

SSH Uses a Simple Solution to man-
in-the-middle

● The first time you connect to a remote host, remember
its public key

Stored in ~/.ssh/known_hosts

● The next time you connect, if the remote key is
different, then maybe an attacker is intercepting the
connection!

Or maybe the remote host has just got a new key, e.g. after a
reinstall. But it's up to you to resolve the problem

● Relies on there being no attack in progress the first
time you connect to a machine

● Connect on LAN before travelling with laptop

NSRC@AfNOG '08
Rabat

SSH Can Eliminate Passwords

● Use public-key cryptography to prove who you
are

● Generate a public/private key pair locally
ssh-keygen -t rsa
Private key is ~/.ssh/id_rsa
Public key is ~/.ssh/id_rsa.pub

● Install your PUBLIC key on remote hosts
mkdir ~/.ssh
chmod 755 ~/.ssh
Copy public key into ~/.ssh/authorized_keys

● Login!

NSRC@AfNOG '08
Rabat

Notes on SSH Authentication

● Private key is protected by a passphrase
So you have to give it each time you log in
Or use "ssh-agent" which holds a copy of your passphrase in

RAM

● No need to change passwords across dozens of
machines

● Disable passwords entirely!
/etc/ssh/sshd_config

● Annoyingly, for historical reasons there are three
different types of SSH key

SSH1 RSA, SSH2 DSA, SSH2 RSA

NSRC@AfNOG '08
Rabat

PGP/GPG – Pretty Good Privacy

NSRC@AfNOG '08
Rabat

PGP Takes a Different View

● We don't trust anyone except our friends
(especially not big corporate monopolies)

● You sign your friends' keys to vouch for them

● Other people can choose to trust your signature
as much as they trust you

● Generates a distributed "web of trust"

● Sign someone's key when you meet them face to
face - "PGP key signing parties"

NSRC@AfNOG '08
Rabat

Summary

NSRC@AfNOG '08
Rabat

Designing a Good Cryptosystem is Very
Difficult

● Many possible weaknesses and types of attack, often
not obvious

● DON'T design your own!

● DO use expertly-designed cryptosystems which have
been subject to widespread scrutiny

● Understand how they work and where the potential
weaknesses are

● Remember the other weaknesses in your systems,
especially the human ones, speaking of which...

NSRC@AfNOG '08
Rabat

The following code was removed from md_rand.c on Debian:

The end result was disastrous...

MD_Update(&m,buf,j);
 [..]

MD_Update(&m,buf,j); /* purify complains */

NSRC@AfNOG '08
Rabat

This was a human issue, and a subtle one at that. More information
is here:

http://metasploit.com/users/hdm/tools/debian­openssl/

NSRC@AfNOG '08
Rabat

Where can you apply these
cryptographic methods?

● At the link layer
PPP encryption

● At the network layer
IPSEC

● At the transport layer
TLS (SSL): many applications support it

● At the application layer
SSH: system administration, file transfers

PGP/GPG: for securing E-mail messages, stand-alone documents, software
packages etc.

Tripwire (and others): system integrity checks

NSRC@AfNOG '08
Rabat

Start Using Cryptography Now!

● Use ssh for remote administration.

● Use scp/sftp for files transfer (except public ftp
repositories).

● Install pop3/imap/smtp servers with tls support.
Phase out the use of non-tls versions (really!)

● Use https for any web application where users enter
passwords or confidential data

e.g. webmail, databases

NSRC@AfNOG '08
Rabat

Any questions?

	Security & Cryptographic Methods
	Core Security Principals
	outline
	What We'll Cover
	Public Key Cryptosystem are Importan
	When Encrypting
	When authenticating
	Digital Signatures have many uses
	Do public keys really solve the key distribution problem?
	The "man-in-the-middle" attack
	TLS/SSL - Digital Certificates
	Digital Certificates can solve the man-in-the-middle problem
	Example: TLS (SSL) web server with digital certificate
	When a client's web browser connects to me with HTTPS:
	The security of TLS depends on:
	Testing TLS (SSL) Applications
	Limitations of s_client
	SSH
	SSH Uses a Simple Solution to man-in-the-middle
	SSH Can Eliminate Passwords
	Notes on SSH Authentication
	PGP/GPG - Pretty Good Privacy
	PGP Takes a Different View
	Summary
	Designing a Good Cryposystem is very Difficult
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

