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Reminder: Core Security Principals

What are they?

(1)-- Confidentiality

(2)-- Integrity

(3)-- Authentication
  - Access Control

- Verification

(4)-- Availability
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Cryptographic Methods

Critical for confidentiality, integrity, and 
authentication.

Indirectly they lead to better availability.

What are some methods and tools?

ssh
ssl

ciphersdigital certificates

digital signatures
md5/sha1

pgp...

public keysprivate keys hashes

des/3des/blowfish

...Do you have any more?
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What We'll Cover

● Digital signatures
● TLS/SSL
● SSH
● PGP
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Public Key Cryptosystems are 
Important

● But they require a lot of computation 
(expensive in CPU time)

● So we use some tricks to minimise the amount 
of data which is encrypted
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When encrypting (review):

Use a symmetric cipher with a random key (the 
"session key"). Use a public key cipher to encrypt 
the session key and send it along with the 
encrypted document.

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private)(public)
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When authenticating (review):

Take a hash of the document and encrypt 
only that. An encrypted hash is called a 
"digital signature"

k2 k1

digital
signature

COMPARE

hash hash

(public)(private)
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Digital Signatures have many uses, for 
example:

● E-commerce. An instruction to your bank to transfer 
money can be authenticated with a digital signature.
Legislative regimes are slow to catch up

● A trusted third party can issue declarations such as "the 
holder of this key is a person who is legally known as 
Alice Hacker"

Like a passport binds your identity to your face

● Such a declaration is called a "certificate"

● You only need the third-party's public key to check the 
signature
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Do public keys really solve the key 
distribution problem?

● Often we want to communicate securely with a 
remote party whose key we don't know

● We can retrieve their public key over the network

● But what if there's someone in between 
intercepting our traffic?

public key
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The "man-in-the-middle" Attack

➔ Passive sniffing is no problem

➔ But if they can modify packets, they can substitute a 
different key

➔ The attacker uses separate encryption keys to talk to both 
sides

➔ You think your traffic is secure, but it isn't!

key 1 key 2

Attacker sees all traffic in plain text - and can modify it!
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TLS/SSL – Digital Certificates
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Digital Certificates can solve the man-in-the-
middle problem

● Problem: I have no prior knowledge of the remote 
side's key, so cannot tell if a different one has been 
substituted

● But maybe someone else does

● A trusted third party can vouch for the remote side 
by signing a certificate which contains the remote 
side's name & public key

● I can check the validity of the certificate using the 
trusted third party's public key
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Example: TLS (SSL) web server with 
digital certificate

● I generate a private key on my webserver

● I send my public key plus my identity (my 
webserver's domain name) to a certificate authority 
(CA)

● The CA manually checks that I am who I say I am, 
i.e. I own the domain

● They sign a certificate containing my public key, my 
domain name, and an expiration date

● I install the certificate on my web server
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When a client's web browser connects 
to me using HTTPS:

● They negotiate an encrypted session with me, during 
which they learn my public key

● I send them the certificate

● They verify the certificate using the CA's public key, which 
is built-in to the browser

● If the signature is valid, the domain name in the URL 
matches the domain name in the certificate, and the 
expiration date has not passed, they know the connection 
is secure

● (Q: why is there an expiration date?)
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The security of TLS depends on:

● Your webserver being secure
● So nobody else can obtain your private key

● The CA's public key being in all browsers

● The CA being well managed
How carefully do they look after their own private keys?

● The CA being trustworthy
Do they vet all certificate requests properly?

Could a hacker persuade the CA to sign their key pretending to 
be someone else? What about a government?

Do you trust them? Why?
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Testing TLS (SSL) Applications
● There is an equivalent of telnet you can use: openssl s_client

● It opens a TCP connection, negotiates TLS, then lets you 
type data

$ openssl s_client -connect afnog.org:443 
CONNECTED(00000003)
depth=1 /C=US/ST=Washingron/L=Bainbridge Island/O=RGnet/PSGnet/OU= \
Engineering/CN=RGnet Root CA/emailAddress=randy@psg.com
verify error:num=19:self signed certificate in certificate chain
verify return:0
...
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA 
...

And, at the end you see:

Verify return code: 19 (self signed certificate in certificate chain)
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Limitations of s_client

● Works only for protocols which use TLS from the 
very beginning of the connection

These protocols are identified by using a different port number to 
the non-encrypted version

(HTTP port 80), HTTPS port 443

(POP3 port 110), POP3S port 995

● Other protocols start unencrypted and then 
"upgrade" the connection to encrypted on request

e.g. SMTP has a "STARTTLS" command

s_client is not usable for these
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SSH
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SSH Uses a Simple Solution to man-
in-the-middle

● The first time you connect to a remote host, remember 
its public key

Stored in ~/.ssh/known_hosts

● The next time you connect, if the remote key is 
different, then maybe an attacker is intercepting the 
connection!

Or maybe the remote host has just got a new key, e.g. after a 
reinstall. But it's up to you to resolve the problem

● Relies on there being no attack in progress the first 
time you connect to a machine

● Connect on LAN before travelling with laptop
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SSH Can Eliminate Passwords

● Use public-key cryptography to prove who you 
are

● Generate a public/private key pair locally
ssh-keygen -t rsa
Private key is ~/.ssh/id_rsa
Public key is ~/.ssh/id_rsa.pub

● Install your PUBLIC key on remote hosts
mkdir ~/.ssh
chmod 755 ~/.ssh
Copy public key into ~/.ssh/authorized_keys

● Login!
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Notes on SSH Authentication

● Private key is protected by a passphrase
So you have to give it each time you log in
Or use "ssh-agent" which holds a copy of your passphrase in 

RAM

● No need to change passwords across dozens of 
machines

● Disable passwords entirely!
/etc/ssh/sshd_config

● Annoyingly, for historical reasons there are three
different types of SSH key

SSH1 RSA, SSH2 DSA, SSH2 RSA
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PGP/GPG – Pretty Good Privacy
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PGP Takes a Different View

● We don't trust anyone except our friends 
(especially not big corporate monopolies)

● You sign your friends' keys to vouch for them

● Other people can choose to trust your signature 
as much as they trust you

● Generates a distributed "web of trust"

● Sign someone's key when you meet them face to 
face - "PGP key signing parties"
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Summary
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Designing a Good Cryptosystem is Very 
Difficult

● Many possible weaknesses and types of attack, often 
not obvious

● DON'T design your own!

● DO use expertly-designed cryptosystems which have 
been subject to widespread scrutiny

● Understand how they work and where the potential 
weaknesses are

● Remember the other weaknesses in your systems, 
especially the human ones, speaking of which...
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The following code was removed from md_rand.c on Debian:

The end result was disastrous...

MD_Update(&m,buf,j);
        [ .. ]

MD_Update(&m,buf,j); /* purify complains */
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This was a human issue, and a subtle one at that. More information
is here:

http://metasploit.com/users/hdm/tools/debian­openssl/
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Where can you apply these 
cryptographic methods?

● At the link layer
PPP encryption

● At the network layer
IPSEC

● At the transport layer
TLS (SSL): many applications support it

● At the application layer
SSH: system administration, file transfers

PGP/GPG: for securing E-mail messages, stand-alone documents, software 
packages etc.

Tripwire (and others): system integrity checks
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Start Using Cryptography Now!

● Use ssh for remote administration.

● Use scp/sftp for files transfer (except public ftp 
repositories).

● Install pop3/imap/smtp servers with tls support. 
Phase out the use of non-tls versions (really!)

● Use https for any web application where users enter 
passwords or confidential data

e.g. webmail, databases
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Any questions?
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