
HandsHands--On UNIX II Exercise:On UNIX II Exercise:   
 
This exercise takes you around some of the features of the shell. Even if 
you don't need to use them all straight away, it's very useful to be aware 
of them and to know how to deal with some problems which may arise. 
 
Try out all of the examples given; if they don't behave how you expect, try 
to work out what went wrong, and ask for assistance if you need it. 
 
Please **DO** write answers and any other notes you care to make on this 
handout. 
 
Note: where a command prompt of '$' is shown, you do _not_ need to be root 
(and therefore you should be a normal user, for safety reasons) 
 
Only where the command prompt is shown as '#' do you need to be root. You 
can use '*su*' to start a temporary root shell, and '*exit*' to return from it. 
 
When you see a command between angled brackets like <CTRL-C>, it means 
“press the CTRL key and the C key together” 
 
Starting and stopping processes 
 
For the purposes of testing, we will use the command 'sleep'. This does 
nothing except wait for a specified number of seconds, and then terminate. 
In real life, the process you start would be a program which does something 
useful. 
 
Try it: 
 
    $ sleep 5 
    <5 second pause> 
    $ 
 
Here you are running the program in the *foreground*. The shell waits for 
the command to finish, before returning you to the prompt. 
 
Now let's try running a longer version, and terminating it early: 
 
       $ sleep 600 
    <Ctrl-C> 
    $ 
 
You didn't want to wait 600 seconds for this process to terminate, so you 
typed Ctrl-C. This sends a "terminate" signal to the process. This tells the 
process that you want it to stop; some programs may take the opportunity to 
clean up any temporary files they have generated first, but will normally 
exit quickly. 
 
Now, instead of running that program in the foreground, let's run it as a 
*background* task. The shell does this if you put a single ampersand (&) after 
the command. 
 
    $ sleep 600 & 
    [1] 8531 
    $ 
 
The shell prompt comes back immediately. It tells you that this is job 
number 1, and has process ID 8531 (in this example). The process ID is 
allocated by the kernel and you will most likely see a different number. 
 

The shell keeps track of each of the jobs it started: 
 
    $ jobs 
  [1]+  Running                 sleep 600 & 
 
and you should also be able to see it in the table of processes: 
 
    $ ps auxw | grep sleep 
  regnauld     8531  0.0  0.1  1188   472  p5  S    11:16PM   0:00.00 sleep 300 
  regnauld     8535  0.0  0.2  1484   912  p5  S+   11:16PM   0:00.00 grep sleep 
 
The first column is the username the process is running as; the second 
column is the pid. Other columns are resource utilisation information, and 
the end shows the command itself. 
 

NOTE: 
 
You can do 'ps auxw' by itself, but then you'd see *all* processes on the 
system, and that's a big list. So we filter it through 'grep' to extract 
only lines which contain the word 'sleep'. grep is itself a process, and 
you may see it in the process listing, depending on whether it starts 
before 'ps' has finished. 

 
Suppose you want to kill this process? You have a choice of several commands. 
 
    $ kill 8531        # using the pid 
  $ kill %1          # using the job number 
  $ fg               # move it from background into foreground, then use Ctrl-C 
 
The first way (using the pid) is the most general-purpose, because as long 
as you have sufficient rights, you can even kill processes which were 
started by other shells. But of course, you'd first need to find the pid of 
the process, using 'ps'. 
 

NOTE: 
Starting commands in the background explicitly using '&' is usually not 
needed. Most daemon processes come with their own startup scripts which do 
it for you, or else are able to put themselves into the background 
automatically. But it's important to be able to locate processes with 'ps' 
and to terminate them using 'kill'. 

 
 
 
 
Environment variables 
 
Have a look at all the environment variables which your shell has set: 
 
    $ printenv 
 
There may well be more than will fit on the screen. If so, how could you see 
them all? 
 
Firstly, you can the output of 'printenv' into another command which 
buffers the output and shows it one page at a time. Try: 
 
  $ printenv | less 
 
Use space and 'b' to move forward and backwards, 'q' to quit. 
 

NOTE: 



What you have actually done is to connect the _standard output_ of 
printenv into a pipe, connect the other side of the pipe into 

the _standard input_ of less, and run both programs at once 
in separate processes. Many Unix utilities are designed to be 
chained together in this way. 

 
 
Another option is to capture the output of the command into a file, which 
you can then open using a text editor (or you can mail it to someone else to 
look at) – this is called redirection (*). 
 
    $ printenv >env.txt 
  $ vi env.txt 
    (exit by typing <ESC> :q! <Enter>) 
 

NOTE: 
Here, you have opened a new file for writing, and connected 
it to the _standard output_ of printenv. 

QUESTION: 
You don't want to leave env.txt lying around. 
How can you delete it? Now delete it.  
How can you check that it has actually been deleted? 

 
Now let's demonstrate how settings in the environment can alter the 
behaviour of a program. 
 
Many programs which need to edit files will use the editor you specify in 
environment variable 'EDITOR'. Have a look at the current setting: there are 
two different ways to do it, try both. 
 
    $ echo $EDITOR 
    vi 
    $ printenv EDITOR 
    vi 
    $ 
 
Now let's look at another command. 'vipw' locks the master.passwd file, runs 
an editor on it, and then rebuilds the various password database files if 
you have made any changes. It can be used to add/delete or modify users. 
Let's try it now; you have to be root. When it puts you into vi, don't make 
any changes, just quit without saving. 
 
    $ su 
   Password: <enter root password> 
   # vipw 
   Type   :q! <enter> 
   #  
      (stay as root for now) 
 
Now we're back again, let's change the EDITOR environment variable to point 
to 'ee', check it has changed, then run vipw again: 
 
   # setenv EDITOR ee 
   # echo $EDITOR 
   ee 
   # vipw 
 
 
 
Hopefully, you'll find yourself in 'ee' which looks very different. You 
should notice a help section at the top of the screen. Getting out of this 

editor is different to getting out of vi: 
 
      <CTRL-C> exit <Enter> 
      #  
 
NOTE: Alternatively, you can bring up a command menu with the <ESC> key. 
 
Once you're back at the command line, type 'exit' again to get out of 'su' 
and so return to being a normal user. The command prompt should revert to '$'. 
 
    # exit 
    $ 
 
Now you're back again, you should check the EDITOR environment variable again: 
 
    $ echo $EDITOR 
    vi 
    $ 
 
What's happened here? It looks like the changes have been lost, and yes 
they have. The reasons are: 
 
* Every shell has its own *copy* in memory of the set of environment variables 
* When you change them, you are changing only the shell's local memory copy 
* When the shell exits, any changes you made are lost 
* When you do 'su' you are starting a new shell, with its own private 
  copy of the environment. So if you change any environment variables there, 
  when you exit you are returning back to the original shell, and back 
  to its original environment: 
 
   $ su            # setenv EDITOR vi  # exit           #  
  [shell 1] ----> [shell 2]  -------> [shell 2] -----> [shell 1] 
  EDITOR=ee       EDITOR=ee           EDITOR=vi       EDITOR=ee 
                 [shell 1]           [shell 1] 
                  EDITOR=ee           EDITOR=ee 

 
So, the only way to make this change permanent is to arrange that every time 
your shell starts up, it sets the environment how you want it. This is done 
through shell startup files, sometimes called "rc files" (for Runtime 
Configuration). 
 
So, how do you make 'ee' the default editor permanently? It's made slightly 
complicated by the fact that by default FreeBSD uses 'csh' for root's shell, 
and 'sh' for other users' shells, and these two different shells have 
different startup scripts and different syntax for setting environment 
variables. 
 
* For root: edit /root/.cshrc and change the existing EDITOR assignment 
  so it says: 
 
    setenv EDITOR ee 
 

NOTE: 
Aside: The quotation marks are not necessary here, but would be if 
the value contained spaces. 

 
* For other users: go to their home directory, edit .profile and change 

  the existing EDITOR assigment so it says: 
 
    EDITOR=ee;  export EDITOR 
 



NOTE: 
Why 'export EDITOR'? With sh, only environment variables marked as "for 

export" are made available to programs started from the shell – for example, another shell starting 
on top, so you have to explicitly “export” them. 

 
 
 
Command processing 
 
Now let's have a look at how the shell processes the line you type, 
splitting it into command and arguments. It's useful to use the command 
'echo' for testing: this just prints back its arguments to you. Try it: 
 
    $ echo hello world 
    hello world 
 
So, where actually is the command 'echo'? Well, you can ask the shell to 
look for it for you: 
 
    $ which echo 
    /bin/echo 
 
How did it find it? By looking in a series of standard directories, and this 
list of places comes from the environment variable 'PATH'. It tries them 
one after the other, stopping as soon as a match is found. 
 
    $ echo $PATH 
    /sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin: 
    /usr/X11R6/bin:/home/yourname/bin 
 
So it tries */sbin/echo* and fails; next it tries */bin/echo* and succeeds. 
If it wasn't there, it would try the other directories. If you want to 
override the search, or you want to run a program which is in a directory 
which is not in $PATH, then you can give it an explicit location: 
 
    $ /bin/echo hello world 
    hello world 
 

NOTE: 
Actually, this particular example is a little bit of a special case but 
it's worth noting. A few commands are built-in to the shell itself, and 
'echo' happens to be one of those. So if you type 'echo' the shell itself 
is answering you; if you type '/bin/echo' you are using an external 
program. 
 
Normally you'd expect both the built-in shell command and the external 
one to behave in the same way, but since they are actually two different 
programs there might be some minor differences. 

 
Line and parameter splitting 
 
When you type 
 
    $ /bin/echo hello world 
 
then the following things happen: 
 
1. the shell splits this into three words: "/bin/echo", "hello" and "world", 
   using spaces as the separator 
 
2. the shell performs various types of expansion on these words (see below) 

 
3. it starts a new process, runs /bin/echo in it, and passes in "hello" and 
   "world" as arguments 
 
4. this program executes. /bin/echo just sends it arguments back down 
   its standard output, separated by a space, and ending with a newline; 
   normally we'd be running something more useful! 
 
You can show this is the case by putting in lots of spaces: 
 
    $ /bin/echo      hello           world 
    hello world 
 
The shell has still split this into three words, "/bin/echo", "hello" and 
"world", and echo has joined them together with a single space. 
 
Where this becomes a problem is if you need to use a filename which contains 
a space (which are usually best avoided, but you will come across them from 
time to time). If you try this: 
 
    $ touch my file 
    $ ls -l 
 
you should find that you have actually created *two* files, called "my" and 
"file". So you need to stop the shell from breaking them into separate 
arguments. You can do this using quoting, and there are three main ways: 
 
    $ touch "my file" 
    $ touch 'my file' 
    $ touch my\ file 
    $ ls -l 
 
The first two are enclosing the filename in either single or double quotes; 
the last is to preceed the space with a backslash, which makes it lose its 
special meaning as an argument separator. This also gives you a way to make 
echo give you a string with lots of spaces in it: 
 
    $ echo "hello       world" 
    hello       world 
 
If using single quotes, make sure you use normal single-quotes: ' 
 
(These are shift-7 on many keyboards, or else near the Enter key.) 
 
Don't use backticks: `  (often the top left-hand key on the keyboard). They have 
an entirely different meaning! 
 
 
 

NOTE: 
If you've done all this, you now have three files in your current directory: 
"my", "file", and "my file". You need to delete them all. You can do this 
with three separate commands - or see if you can work out how to make a 
single line which deletes all three. 

 
 
Note that it's always safe to add quoting to arguments, even if they don't 
strictly need it. So these two commands are the same: 
 
    $ rm somefile 
    $ rm "somefile" 
 



 
Argument expansion 
 
The shell performs additional processing on arguments; it's very useful, 
but it can cause strange behaviour if you're not aware of it. Try the 
following command: 
 
    $ cd /usr/bin 
    $ echo *what* is your name? 
    makewhatis what whatis is your name? 
 
That's certainly strange! You thought echo was supposed to just return the 
arguments you gave it? Well it has, but the shell has expanded them first. 
 
Here the shell is doing pattern matching against files in the filesystem, 
otherwise known as "filename globbing". The character "*" matches any 0 or 
more characters in the filename. So, "\*what\*" looks in the current 
directory for all files whose names contain the string 'what' anywhere in 
the middle, and replaces it with those filenames. 
 
You might know something similar from the DOS/Windows world, called 
wildcards: * and ? 
 

NOTE: 
Prove to yourself that files /usr/bin/makewhatis, /usr/bin/what 
and /usr/sbin/whatis do in fact exist on your system. 

 
 
You can prevent this from happening by using quoting, just as we saw before. 
You can quote individual words, or quote the whole piece of text so that 
echo sees it as a single argument: 
 
    $ echo "*what* is your name?" 
    *what* is your name? 
 
Globbing is really useful; for example you can delete all files in the 
current drectory with names ending .txt just by typing "rm *.txt" 
 
Filename globbing uses these special characters: 
 
    *       matches any 0 or more characters 
    ?       matches any 1 character 
    [abc]  matches 'a', 'b' or 'c' only 
    [a-z]   matches any character between 'a' and 'z' inclusive 
 
 
 

QUESTION: 
Try these commands. Look carefully at the last word of the 
result. Explain what has happened. 
  
     $ cd /usr/sbin 
     $ echo what is your name? 

 
 
Home directory (tilde or ~) expansion 
 
Arguments which begin with a tilde (~) are expanded into your home 
directory, or if followed immediately by a username, the home directory 
of that user (taken from /etc/passwd). t 
 

    $ echo ~ 
    /home/yourname 
    $ echo ~/wibble 
    /home/yourname/wibble 
    $ echo ~root/wibble 
    /root/wibble 
    $ echo ~www/wibble 
    /nonexistent/wibble 
 
 
It's a useful shortcut; e.g. ~/.ssh/authorized_keys refers to a file within 
directory .ssh within your home directory. 
 

NOTE: 
In the standard shell “sh”, there is no checking that the filename produced 
actually exists or not.  tcsh and other shells do check. 

 

 
Parameter expansion 
 
Arguments which contain $ are subject to further expansion. There are 
actually a lot of things you can do with this, but the most common example 
is substitution of environment variables, as we saw before with $PATH. 
 
    $ echo $HOME 
    /home/yourname 
 
There are some special shell variables, the most useful being $? which gives 
the exit status of the last command (0=success, >0=failure) and $$ which 
gives the process id of the shell itself. 
 
    $ echo $$ 
    2302 
 
However you can do other fancy things, including using the output of one 
command and inserting it in the command line as an argument to another. 
There are two syntaxes for this, $(...) and backticks. For example, we can 
run 'wc' to count the lines in a file, and use the result as an argument to 
another command, such as 'echo' for testing. 
 
    $ echo $(wc -l /etc/motd) 
    24 /etc/motd 
    $ echo `wc -l /etc/motd` 
    24 /etc/motd 
 
(If using the second form, make sure you use backticks (`),not apostrophes. If 
you use apostrophes then you've just quoted the string, and it will be 
echoed back to you as-is) 
 
And argument expansions can even perform basic arithmetic, although it's 
very rarely used: 
 
    $ echo $((3+4)) 
    7 
 
This sort of parameter expansion can be disabled by quoting, except that 
double quotes don't disable it; single quotes and backslash do. So: 
 
    $ echo "Home is $HOME" 
    Home is /home/yourname 
    $ echo 'Home is $HOME' 
    Home is $HOME 



    $ echo Home is \$HOME 
    Home is $HOME 
 
I/O redirection 
 
You've already seen one example of I/O redirection: connecting the standard 
output of a process to write to a file. 
 
    $ echo "hello" >test.txt 
 
But you can also append to a file, instead of overwriting it: 
 
    $ echo "hello" >>test.txt 
    $ echo "hello" >>test.txt 
 
Equally you can connect the standard input of a process to read from a file: 
 
    $ less < test.txt 
    (should show three lines of 'hello') 
 
Command grouping 
 
The shell lets you run multiple commands on the same line. Some example are: 
 
1.  Run commands one after the other 
 
        $ echo hello; echo world 
        hello 
        world 
 
2.  Run command only if the preceeding command succeeded 
 
        $ echo hello && echo world 
        hello 
        world 
 
3.  Run command only if the preceeding command failed 
 
        $ echo hello || echo world 
        hello 
 
4.  Run a group of commands in a subshell. They can share I/O redirection. 
 
        $ (echo hello; echo world) > out.txt 
 
Again, if you need to use these special symbols as part of an argument (say 
they are in a filename), you can quote them. 
 
    $ echo "hello; echo world" 
    hello; echo world 
 
Quoting summary 
 
This is by no means a complete list of shell features, but it should be 
clear by now that lots of characters have special meanings to the shell. If 
you are using a filename which contains anything other than letters and 
numbers, dot, dash and underscore, you'd be wise to quote it to make sure 
nothing unexpected happens! And you should try to avoid creating files whose 
names contain special characters (space, question mark, asterisk, ampersand, 
tilde etc) in the first place, because of the confusion they could cause to 
others. 
 

Flags and dash 
 
Finally, many commands take options (flags) beginning with a dash. For 
example: 
 
    $ less -Mi /etc/motd 
 
The -M and -i flags alter the behaviour of less (read 'man less' if you want 
to know how). So how would you actually create or delete a file whose name 
begins with a dash? The command will try to interpret it as a flag, not a 
filename. 
 
    $ touch -foo 
    touch: illegal option -- o 
    usage: touch [-acfhm] [-r file] [-t [[CC]YY]MMDDhhmm[.SS]] file ... 
 
Quoting doesn't help us here, because it's not the shell which is expanding 
anything. But most commands have a convention that if you include '--' as an 
option, then everything afterwards is *not* considered an option, even if 
it starts with a dash. So: 
 
    $ touch -- -foo 
    $ ls 
    $ rm -- -foo 
 
Warning: because they are a pain, try to avoid creating files whose name 
begins with a dash! 
 
Extra exercises 
 
If you have spare time available, work on the following problems. Feel free 
to refer to any handouts, documents or web pages which might help you. 
 
1. You know that printenv lists all the environment variables which are set, 
one per line. How could you quickly determine *how many* environment 
variables are set? (That is, without counting them by hand :-) 
 
2. The command "touch -foo" shown above gives a failure message. What exit 
status value does it return? If you try to run a non-existent command, what 
exit status do you get? 
 
3.  Capture the actual error message which "touch -foo" gives into a file. 
    Make sure that the file does actually contain the error message. 
    (Hint: error messages are sent on the standard error stream, not 
    standard output) 
 
    This is useful in the event that you wanted to mail the error 
    message to someone, for example. 
 
4.  List all the files in /etc which have "tab" in their name. Find two 
    or more different ways of doing it, at least one not using asterisk. 
 


