
Using SSH and Security

AFNOG 5 WorkshopAFNOG 5 Workshop

Hervey AllenHervey Allen

Topics

� Where to get SSH (Secure SHell)

� How to enable and configure SSH

� Where to get SSH clients for Windows

� Authentication of the server to the client
 (host keys)

� Issues to do with changing of the host key

� Password authentication of the client to the
 server

� Cryptographic authentication of the client to
 the server (rsa/dsa keys)

� ssh-agent and ssh-add

Cryptographic Methods and Apps

Previously we had mentioned the following
practical applications apply to the following
methods:

� At the link layer PPP encryption

� At the network layer IPSEC

� At the transport layer TLS (SSL)

� At the application layer SSH, PGP/GPG

SSH Application Layer Security

In this section we will go over SSH at the
application layer to do both authentication
and data encryption.

In the Apache+SSL section given in track 1 we
discussed using SSL at the transport layer for
secure web-based connections.

We are going to largely ignore SSH Version 1
issues with RSA 1 Keys, but we will note this a
few times during the presentation.

Main Security Concerns

SSH applies directly to dealing with these two areas
of security:

�Confidentiality

� Keeping our data safe from prying eyes

�Authentication and Authorisation

� Is this person who they claim to be?

Where to Get SSH

First see if SSH is installed on your system and what
version. Easiest way is:

ssh -V

If you want or need an updated version of OpenSSH
(current version is 3.8) you can go to the following
places:

http://www.freebsd.org/ports/security.html
http://www.openssh.org/portability.html
http://www.freebsd.org/ports/

 (search on 'openssh')

or, current version on FreeBSD 5.2 CD-ROM:

ftp://noc.ws.afnog.org/pub/FreeBSD/packages/All/openssh-3.6.1_.tbz

Enable and Configure OpenSSH
On our machines this is already done, but if you did
somehing like:

pkg_add - r openssh

� You should make sure that /etc/rc.conf has
 sshd_enabl e=” YES”

� Take a look at /etc/ssh/ssh_config and /etc/sshd_config.
 In sshd_config you might be interested in:

Per mi t Root Logi n yes/ no

and in /etc/ssh/ssh_config (this can cause problems):

Pr ot ocol 1, 2

There are many options in ssh_config and sshd_config. You should read
through these files to verify they meet your expecations.

Where to Get SSH Clients for Windows

There are multiple free, shareware, and commercial
ssh clients for Windows.

See http://www.openssh.org/windows.html for a list.

A few that support protocol version 2 include:

� Putty:
http://www.chiark.greenend.org.uk/~sgtatham/putty/

� OpenSSH for Windows (using Cygwin):
http://www.networksimplicity.com/openssh/

� Secure Shell from ssh.com (free for personal use):

http://www.ssh.com/products/ssh/download.cfm

And F-Secure at http://www.f-secure.com/products/ssh/ is a nice product
if you are willing to pay.

� If you want a great SSH RSA/DSA key overview Daniel
 Robbins CEO of gentoo.org has written a 3-part series
 hosted on the IBM Developer Works pages.

� The three papers and URL's are:

OpenSSH Key Management, Part 1
http://www-106.ibm.com/developerworks/library/l-keyc.html

OpenSSH Key Management, Part 2
http://www-106.ibm.com/developerworks/library/l-keyc2/

OpenSSH Key Management, Part 3
http://www-106.ibm.com/developerworks/library/l-keyc3/

Some Useful SSH References

For a comparison of SSH Version 1 and 2 see:

http://www.snailbook.com/faq/ssh-1-vs-2.auto.html

 An excellent book on SSH is:

SSH, The Secure Shell
The Definitive Guide
By Daniel J. Barrett &
Richard Silverman
January 2001
ISBN: 0-596-00011-1

More SSH References

SSH Connection Methods

Several things can happen when using SSH to
connect from your machine (client) to another
machine (server):

� Server's public host key is passed back to the client
and verified against known_hosts

� Password prompt is used if public key is accepted,
or already on client, or

� RSA/DSA key exchange takes place and you must
enter in your private key passphrase to
authenticate

SSH Quick Tips
You have a choice of authentication keys - RSA
is the default as it's generally better.

The files you care about are:

/etc/ssh/ssh_config
/etc/ssh/sshd_config
~/.ssh/identity and identity.pub (deprecated)
~/.ssh/id_dsa and id_dsa.pub
~/.ssh/id_rsa and id_rsa.pub
~/.ssh/known_hosts
~/.ssh/authorized_keys
And, note the rsa/dsa host-wide key files in /etc/ssh

Be sure that you do “man ssh” and “man sshd”
and read the entire descriptions for both the
ssh client and ssh server (sshd).

SSH Authentication

Private key is protected by a passphrase
So you have to give it each time you log in
Or use "ssh-agent" which holds a copy of your

passphrase in RAM

No need to change passwords across dozens of
machines

Disable passwords entirely!
/etc/ssh/sshd_config

Annoyingly, for historical reasons there are
three different types of SSH key
SSH1 RSA, SSH2 DSA, SSH2 RSA

Man in the Middle Attacks

The first time you connect to a remote host,
remember its public key
Stored in ~/.ssh/known_hosts

The next time you connect, if the remote key is
different, then maybe an attacker is
intercepting the connection!
Or maybe the remote host has just got a new key, e.g.

after a reinstall. But it's up to you to resolve the
problem

You will be warned if the key changes.

Exchanging Host Keys
First time connecting with ssh:

ssh t 1@pc1. t 1. ws. af nog. or g
The aut hent i c i t y of host ' pc1. t 1. ws. af nog. or g (84. 201. 31. 11) ' can' t be
est abl i shed.
DSA key f i nger pr i nt i s 91: ba: bf : e4: 36: cd: e3: 9e: 8e: 92: 26: e4: 57: c4: cb: da.
Ar e you sur e you want t o cont i nue connect i ng (yes / no) ? yes
War ni ng: Per manent l y added ' pc1. t 1. ws. af nog. or g, 84. 201. 31. 11' (DSA) t o
t he l i s t of known host s.
t 1@pc1. t 1. ws. af nog. or g' s passwor d:

At this point the client has in the file ~/.ssh/known_hosts the contents
of pc1.t1.ws.afnog.org's /etc/ssh/ssh_host_dsa_key.pub.

Next connection:

[hal l en@hal l en- l t . ssh] $ ssh t 1@pc1. t 1. ws. af nog. or g
t 1@pc1. t 1. ws. af nog. or g' s passwor d:

Now trusted - Not necessarily a good thing...

Exchanging Host Keys Cont.
Command Key Type Generated Public File

ssh-keygen -t rsa RSA (SSH protocol 2) id_rsa.pub
ssh-keygen -t dsa DSA (SSH protocol 2) id_dsa.pub

- Default key size is 1024 bits
- Public files are text
- Private files are encrypted if you use a
 passphrase (still text)

Corresponding file on the host for host key
exchange is “known_hosts”.

Exchanging Host Keys Cont.
How does SSH decide what files to compare?

Look in /etc/ssh/sshd_config. For OpenSSH
version 2 and 3 the server defaults to protocol 2
then 1.

By default OpenSSH version 2 client connects
in this order:

RSA version 2 key
DSA version 2 key
Password based authentication (even if RSA
version 1 key is present)

Pay attention to the “HostKeyAlgorithms” setting in /etc/ssh/ssh_config to
help determine this order - or use ssh command line switches to override
these settings.

� Note: OpenSSH 3.8 supports SSH protocol
versions 1.3, 1.5, and 2.0. There is no SSH
protocol version 3.0.

� OpenSSH 3.x vs. 2.x. Some file locations
changed.

� OpenSSH 3.8 uses authorized_keys and
known_hosts files for both protocol 1 and
2 keys.

OpenSSH 3.x Differences

Basic concept to understand how an SSH connection is
made using RSA/DSA key combination:
– Client X contacts server Y via port 22.
– Y generates a random number and encrypts this

using X's public key. X's public key must reside on
Y. You can use scp to copy this over.

– Encrypted random number is sent back to X.
– X decrypts the random number using it's private

key and sends it back to Y.
– If the decrypted number matches the original

encrypted number, then a connection is made.
– The originally encrypted random number sent from

Y to X is the “childMagicPhrase”

We'll try drawing this as well...

SSH - “childMagicPhrase”

You can use ssh-agent to start a process with an ssh
wrapper. For example:

ssh- agent / usr / l ocal / bi n/ bash

Then you can use ssh-add to add your private keys in to
memory under the ssh-agent session. For example to
add your private keys:

ssh- add ~/ . ssh/ i d_dsa

ssh- add ~/ . ssh/ i d_r sa

You will be prompted for your private key password(s) if
you have any set. If you just type “ssh- add”, then all
keys are added, with RSA first then DSA.

SSH - ssh-agent and ssh-add

We will now practice the following
concepts:
- The use of known_hosts files
- SSH connection with password authentication
- RSA version 2 protocol key generation
- Public key copying
- Connecting with private key passphrase using
 key-based authentication
- Using scp with RSA key authentication
- Using ssh-agent and ssh-add to connect
 without a password or passphrase challenge*

*Technically you are still challenged (even if that is a bad pun in English).

SSH - Lab

The use of known_hosts files

Connect to the machine next to your machine using ssh:
ssh t 1@pcn. t 1. ws. af nog. or g

If this is your first connection to this machine you should
see (example uses host5 connecting to host6):

pc1# ssh t 1@pc6. t 1. ws. af nog. or g
The aut hent i c i t y of host ' pc6. t 1. ws. af nog. or g (84. 201. 31. 16) ' can' t be
est abl i shed.
RSA1 key f i nger pr i nt i s 60: f 7: 04: 8b: f 7: 61: c4: 41: 6e: 9a: 6f : 53: 7d: 95: cb: 29.
Ar e you sur e you want t o cont i nue connect i ng (yes/ no) ?

Go ahead and answer “yes” here, but we'll discuss the
implications of this in class. Are there ways around this?
Could this be a “man in the middle” attack? What file is
created or updated? Why?

SSH - Lab Cont.

ssh connection with password authentication

At the prompt below when you answered yes, you were asked
to enter in the root password for pcn.t1.ws.afnog.org:

host 5# ssh t 1@pc6. t 1. ws. af nog. or g
The aut hent i c i t y of host ' pc6. t 1. ws. af nog. or g (84. 201. 31. 16) ' can' t be
est abl i shed.
RSA2 key f i nger pr i nt i s 60: f 7: 04: 8b: f 7: 61: c4: 41: 6e: 9a: 6f : 53: 7d: 95: cb: 29.
Ar e you sur e you want t o cont i nue connect i ng (yes/ no) ? yes

And, this is what you should have seen:

War ni ng: Per manent l y added ' pc6. t 1. ws. af nog. or g' (RSA2) t o t he l i s t of known
host s. [/etc/ssh/ssh_host_key.pub]

t 1@pc6. t 1. ws. af nog. or g' s passwor d:

Now you are “securely” connected as t1 to
pcn.t1.ws.afnog.org - We will discuss what happened
during this connection.

SSH - Lab Cont.

rsa1/rsa2/dsa Key Generation

We will now generate a single RSA SSH protocol 2 key of 2048
bits. To do this, issue the following command. If you are
logged in on the other machine, logout first!

Before continuing: you may need to edit /etc/ssh/ssh_config
and make sure that the “Protocol” option is set either to
“Protocol 2,1” or “Protocol 2”

ssh- keygen - t r sa - b 2048

You will be prompted for a file location for the key as well as for
a passphrase to encrypt the key file. Be sure to enter a
passphrase. Private key files without passphrases are a
security hole. We'll discuss why as we complete this
excercise. You can use a passphrase other than “afnog3” if
you wish.

SSH - Lab Cont.

RSA 2 Key Generation

Here is the output from the command
“ssh-keygen -t rsa -b 2048”:

SSH - Lab Cont.

pc55# ssh- keygen - t r sa - b 2048
Gener at i ng publ i c/ pr i vat e r sa key pai r .
Ent er f i l e i n whi ch t o save t he key
(/ r oot / . ssh/ i d_r sa) : [ent er]
Ent er passphr ase (empt y f or no passphr ase) : [pw]
Ent er same passphr ase agai n: [pw]
Your i dent i f i cat i on has been saved i n /
r oot / . ssh/ i d_r sa.
Your publ i c key has been saved i n /
r oot / . ssh/ i d_r sa. pub.
The key f i nger pr i nt i s:
0f : f 5: b3: bc: f 7: 5b: c8: ce: 79: d0: b1: ab: 2c: 67: 21: 62
t 1@pc5. t 1. ws. af nog. or g
pc5#

Public Key Copying

Now that you have a public and private RSA(2) set of keys you
can take advantage of them. We will copy the public key to
the same host you connected to previously, save this to the
files known_hosts, and then reconnect to the host and see
the difference:

First you must copy the public key files to the host you used
previously (pcn.t1.ws.afnog.org):

cd ~/ . ssh
scp i d_r sa. pub t 1@pcn. t 1. ws. af nog. or g: / t mp/ .

You will be prompted for the password for the host and
username you are connecting to. We continue with our
example using pc5 connecting to pc6 as t1.

SSH - Lab Cont.

Public Key Copying

The output from the command on the previous page looks like:

SSH - Lab Cont.

pc5# scp * . pub t 1@pc66. t 1. ws. af nog. or g: / t mp/ .
t 1@pc6. t 1. ws. af nog. or g' s passwor d:
i d_r sa. pub 100% | * | 408 00: 00
pc5#

You now have the public key file sitting on the host that will
need them to use RSA/DSA public/private key authentication
with you. You next step is to place these keys in the
appropriate files.

You need the RSA keys in ~/.ssh/authorized_keys

You can try to figure this out, or go to the next slide for
steps to do this:

Public Key Copying

To copy the public keys to the correct places do the
following:

ssh t 1@pcn. t 1. ws. af nog. or g
cat / t mp/ i d_r sa. pub >> ~/ . ssh/ aut hor i zed_keys
r m / t mp/ i d_r sa. pub
exi t

If you are unsure of what these commands do they will they are
explained in class. In addition, you can do this many
different ways, and you could issue the commands
differently as well. If you understand what these commands
do and have a preferred method, then feel free to use it.

Go to the next slide to connect with your public/private keys!

SSH - Lab Cont.

Public/Private Key Connection

To connect using your RSA protocol 2 key simply type:

ssh t 1@pcn. t 1. ws. af nog. or g

And, here is the output you should see:

host 5# ssh t 1@pc6. t 1. ws. af nog. or g
Ent er passphr ase f or RSA key ' t 1@pc5. t 1. ws. af nog. or g' :

This is actually pretty neat! You did not enter in the root
password for the root account on pcn.t1.ws.afnog.org, but
rather you used the passphrase that you chose for your
private RSA protocol 2 key when you issued the command
“ssh-keygen -t rsa -b 2048” - This was used to decode the encoded
random number exchanged between the hosts (remember
“childMagicPhrase?”).

Why was the RSA protocol 2 key used? We'll discuss this in class.

SSH - Lab Cont.

SCP Public/Private Key Connection

First disconnect from the ssh session you previously made:

exi t

Now, try copying a file from your machine to the other
machine (pick a small file) using SCP (SeCure coPy):

scp f i l ename t 1@pcn. t 1. ws. af nog. or g: / t mp/ .

What did you notice? You should have noticed that you no
longer get a password challenge to this account on this
node, but rather you need to provide your RSA protocol 2
private key passphrase.

This is expected. SCP and SSH are from the same package -
OpenSSH and both use RSA and DSA keys in the same way.

SSH - Lab Cont.

Example of a No Challenge Connection

We will now use ssh-agent and ssh-add to setup an
environment on your machine where you can connect to
your other machine, as root, without having to enter a
password or passphrase at the time of the connection.

You will, however, have to enter your RSA protocol 2 private key
passphrase once during this session. We'll discuss ssh- add
and ssh- agent in class, but read “man ssh- agent ” and
“man ssh- add” for more details:

On the next slide you will setup your bash shell environment to
contain your RSA protocol version 2 private key passphrase.
This will allow you to connect, logout, reconnect, exit,
connect again, and so on to root at the host you have
chosen issuing your private key passphrase only once:

SSH - Lab Cont.

Example of a No Challenge Connection

Follow these steps to setup a “no challenge” connection:

ssh- agent / usr / l ocal / bi n/ bash
ssh- add
ssh t 1@pcn. t 1. ws. af nog. or g

What happened? You should have been prompted for your RSA
version 2 protocol private key passphrase (remember, that's
what is in ~/.ssh/id_rsa) when you typed ssh- add. Then,
when you connected you did not need a passphrase. (If you
have an RSA 1 key, you will be prompted for the passphrase
for ~/.ssh/identity).

Now for the fun part. Logout, and log back in to the same session:
l ogout
ssh t 1@pcn. t 1. ws. af nog. or g

Now what happened?

SSH - Lab Cont.

No Challenge Connection Notes

� ssh-add and ssh-agent have some slightly different behavior
than just using ssh.

� If you don't specify a passhprase for your private key files
when you create them, then you can truly connect with no
password challend of any type - This is dangerous!

� Note that ssh-add defaults to ~/.ssh/id_rsa first then id_dsa.

SSH - Lab Cont.

Additional Notes

� You can use ssh-agent to “wrap” other
programs that may need to use RSA/DSA
authentication, but that cannot deal with
multiple passphrase (or password) requests.

� The final Lab slides contain a complete
session with notes of using ssh-agent and
ssh-add.

SSH - Lab Cont.

ssh-agent/ssh-add session*

SSH - Lab Cont.

host 5# wher e bash [Fi nd wher e bash r esi des]
/ usr / l ocal / bi n/ bash
host 5# ssh- agent / usr / l ocal / bi n/ bash [Wr ap bash i n ssh- agent]
bash- 2. 05a# ssh- add [Add r sa1 pr i vat e key by def aul t]
Need passphr ase f or / r oot / . ssh/ i dent i t y
Ent er passphr ase f or r oot @host 5. t 1. ws. af nog. or g:
I dent i t y added: / r oot / . ssh/ i dent i t y (r oot @host 5. t 1. ws. af nog. or g)
bash- 2. 05a# ssh- add ~/ . ssh/ i d_r sa [Add r sa v2 pr i vat e key expl i ci t l y]
Need passphr ase f or / r oot / . ssh/ i d_r sa
Ent er passphr ase f or / r oot / . ssh/ i d_r sa:
I dent i t y added: / r oot / . ssh/ i d_r sa (/ r oot / . ssh/ i d_r sa)
bash- 2. 05a# ssh r oot @host 6. t 1. ws. af nog. or g [Logi n wi t h no passwor d chal l enge]
Last l ogi n: Tue May 7 02: 47: 24 2002 f r om host 5. t 1. ws. af no
Copyr i ght (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regent s of t he Uni ver si t y of Cal i f or ni a. Al l r i ght s r eser ve
Fr eeBSD 4. 5- RELEASE (GENERI C) #0: Mon Jan 28 14: 31: 56 GMT 2002

- -
AFNOG 2002 Wor kshop - - Lome, Togo
- -
You have mai l .
host 6#

* St i l l r el evant , but exampl e i f f r om May 2002 usi ng SSH Ver si on 3. 1.

ssh-agent/ssh-add session

SSH - Lab Cont.

host 6# exi t [Exi t t he shel l sessi on]
l ogout
Connect i on t o host 6. t 1. ws. af nog. or g c l osed.
bash- 2. 05a# ssh r oot @host 6. t 1. ws. af nog. or g [Log back i n - No passwor d!]
Last l ogi n: Tue May 7 03: 00: 53 2002 f r om host 5. t 1. ws. af no
Copyr i ght (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994

The Regent s of t he Uni ver si t y of Cal i f or ni a. Al l r i ght s r eser ve
Fr eeBSD 4. 5- RELEASE (GENERI C) #0: Mon Jan 28 14: 31: 56 GMT 2002

- -
AFNOG 2002 Wor kshop - - Lome, Togo
- -
You have mai l .
host 6# exi t [Exi t t he sessi on agai n]
l ogout
Connect i on t o host 6. t 1. ws. af nog. or g c l osed.
bash- 2. 05a#
bash- 2. 05a# ssh- add - l [Show r sa/ dsa key f i nger pr i nt s]
2048 7d: 68: 9b: 55: 0f : ba: 6c: 75: 23: ab: 36: f b: 4c: a3: 66: ea / r oot / . ssh/ i d_r sa (RSA)
bash- 2. 05a#

ssh-agent/ssh-add session end

SSH - Lab Cont.

bash- 2. 05a# ssh- add - d ~/ . ssh/ i d_r sa [Remove a pr i vat e key]
I dent i t y r emoved: / r oot / . ssh/ i d_dsa (/ r oot / . ssh/ i d_dsa. pub)
bash- 2. 05a# ssh- add - l [Li st r emai ni ng keys]
bash- 2. 05a#
bash- 2. 05a# exi t
exi t [Exi t ssh- agent bash shel l]
host 5#

Don't forget to read up on this with “man ssh- agent ,” and
“man ssh- add” for many more options and details about
how to use these programs.

The Topic You've Been Waiting For...

� You can use SSH to tunnel insecure services
in a secure manner.

� SSH tunneling services includes
authentication between known_hosts,
password challenge, and public/private key
exchanges.

� You can, even, indirectly tunnel via an
intermediary machine.

Tunneling with SSH

The basic concept looks like this:

� Connect from one machine to another as
user name.

� Use ssh options to specify the port
number on the remote machine that you
wish to forward to the port on your local
machine.

� Your ssh connection will “tunnel” data
securely across ssh from the remote
machine to your local machine.

� There are several options to be aware of.

Tunneling with SSH Cont.

Tunneling by Example

Here is a sample tunnel command using SSH
under FreeBSD:

ssh - C - f user name@host . domai n - L 1100: l ocal host : 110 s l eep 10000

What is happening here?
- The '-C' option specifies compress the data. Good on

modems, bad on fast networks.
- '-f' means ssh goes to the background just before executing

the specified command listed (in this case, “sleep 10000”).
- '-L' forwards the port on the left, or client (1100) to the one

on the right (110) or remote side.

Tunneling with SSH Cont.

Tunneling by Example Cont.

So, what does this command do?

ssh - C - f user name@host . domai n - L 1100: l ocal host : 110 s l eep 10000

� This “tunnels” your POP email from port 110 on the remote side
through port 1100 on your local side.

� The process backgrounds for 10000 seconds (detaches and runs).

� This is done under the authority between yourself (client) and
user@host.domain.

Diagram* of Tunneling both smtp and POP Services

Tunneling with SSH Cont.

 Host . domai n: 110
l ocal host : 1100 o- <+- - - - - - - - - - + ~ ~ +- - - - - - - - - - +>- - <<- - o- - - - - - - - - - - - - +
 | SSH Cl i ent | ~ ~ ~ ~ ~| SSH Ser ver | | mai l ser ver |
l ocal host : 2500 o- >+- - - - - - - - - - + ~ ~ +- - - - - - - - - - +>- - >>- - o- - - - - - - - - - - - - +
 host . domai n: 25

*Thanks to http://www.ccs.neu.edu/groups/systems/howto/howto-sshtunnel.html

Tunneling by Example Cont.

Why use something like ports “1100” and
“2500”?

� Ports up to 1024 can only be reset by the root user.

� If you are root you can forward 110 to 110, 25 to 25, and so on.

� Other popular tunneling tricks include tunnels for XWindows,
IMAP, etc.

� On the client side you must set programs to use “localhost” - For
example, for POP and smtp, your mail client must use “localhost”
instead of host.domain (i.e. no more “mail.host.com”).

� If you are not root, and your ports are changed, then your mail
client must be able to set the smtp and POP ports as well.

� We'll show this using Sylpheed under Linux right now...

Tunneling with SSH Cont.

One More Tunneling Example

You can use SSH to do “Indirect Port Forwarding”

� What to do if your organization's email sits behind a
firewall?

� Connect via an intermediary box (gateway).
Here's a real world example:

Tunneling with SSH Cont.

l ocal host : 1100 o- <+- - - - - - - - - - + ~ ~ +- - - - - - - - - - +>- - <<- - o- - - - - - - - - - - - - +. .
 | SSH Cl i ent | ~ ~ ~ ~ ~| SSH Ser ver | | gat eway | . .
l ocal host : 2500 o- >+- - - - - - - - - - + ~ ~ +- - - - - - - - - - +>- - >>- - o- - - - - - - - - - - - - +. .

 host . domai n: 110
. . . >- - <<- - +- - - - - - - - - - +>- - <<- - o- - - - - - - - - - - - - +
 | SSH Ser ver | | mai l . us. t l an|
. . . >- - >>- - +- - - - - - - - - - +>- - >>- - o- - - - - - - - - - - - - +
 host . domai n: 25

Ssh - C - f hal l en@gat eway. t ur bol i nux. com - L 2500: mai l . us. t l an: 25
- L 1100: mai l . us. t l an: 110 / bi n/ sl eep 10000

� Tunneling lets you securely access basic
services such as POP and IMAP.

� You can securely tunnel ports using SSH.

� You can use /etc/services to verify you are
not using a port that is already defined.

� Only root can redfine ports below 1024.

� You can tunnel ports directly between two
machines, and indirectly with a machine
in the middle.

Tunneling with SSH Conclusion

SSH and SCP are two great tools for
connecting between machines and
copying data while helping to maintain a
secure environment.

If you can, we recommend you remove telnet and FTP from your
system. Or, at most, only allow anonymous FTP access.

You can use SSH to tunnel ports securely that would otherwise
pass your information (username, password, and session
data) in the clear.

Remember - Use the references for more detailed information.
This includes “man ssh” and “man sshd” for much more
information.

SSH Conclusion

