
 What is LDAP?

LDAP stands for Lightweight Directory Access Protocol. As the name suggests, it is a
lightweight protocol for accessing directory services, specifically X.500-based directory
services. LDAP runs over TCP/IP or other connection oriented transfer services. The nitty-gritty
details of LDAP are defined in RFC2251 "The Lightweight Directory Access Protocol (v3)" and
other documents comprising the techafnogal specification RFC3377.

What kind of information can be stored in the directory? The LDAP information model is based
on entries.An entry is a collection of attributes that has a globally-unique Distinguished Name
(DN). The DN is used to refer to the entry unambiguously.

DN:relativeDomainName=domain1,dc=afnog,dc=org
objectClass:dNSZone
objectClass:zonePerson
relativeDomainName:domain1
zoneName:org
dNSClass:IN
proprietaire:CLIENT1
dateacquis:20040604041800Z
validite:20060605164000Z
techafnogal-contact: ALAIN AINA
techafnogal-contact:AIT, bangkok
techafnogal-contact:Tel:+78123455678-Email:aalain@trstech.net
admin-contact: John CRAIN
admin-contact:ICANN
admin-contact:Tel:+2282255555 - Email: john@icann.org
dNSTTL:7200
nSRecord: adjo.cafe.org.
nSRecord: ns.psg.com.

How is the information arranged? In LDAP, directory entries are arranged in a hierarchical
tree-like structure. Traditionally, this structure reflected the geographic and/or organizational
boundaries. The tree may also be arranged based upon Internet domain names. This naming
approach is becoming increasing popular as it allows for directory services to be located using
the DNS.

In addition, LDAP allows you to control which attributes are required and allowed in an entry
through the use of a special attribute called objectClass. The values of the objectClass
attribute determine the schema rules the entry must obey.

objectclass (1.1.2.2.2 NAME 'myPerson'
 DESC 'my person'
 SUP inetOrgPerson
 MUST (myUniqueName $ givenName)
 MAY myPhoto)

attributetype (1.1.2.1.2 NAME 'myPhoto'
 DESC 'a photo (application defined format)'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 SINGLE-VALUE)

How is the information referenced? An entry is referenced by its distinguished name, which is
constructed by taking the name of the entry itself (called the Relative Distinguished Name or
RDN) and concatenating the names of its ancestor entries. The full DN format is described in
RFC2253, "Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names."

DN:relativeDomainName=domain1,dc=afnog,dc=org

How is the information accessed? LDAP defines operations for interrogating and updating the
directory. Operations are provided for adding and deleting an entry from the directory, changing
an existing entry, and changing the name of an entry. Most of the time, though, LDAP is used to
search for information in the directory. The LDAP search operation allows some portion of the
directory to be searched for entries that match some criteria specified by a search filter.
Information can be requested from each entry that matches the criteria.

How is the information protected from unauthorized access? Some directory services provide
no protection, allowing anyone to see the information. LDAP provides a mechanism for a client
to authenticate, or prove its identity to a directory server, paving the way for rich access control
to protect the information the server contains. LDAP also supports privacy and integrity security
services.

LDAP Model

LDAP models represent the services provided by a server, as seen by a client. They are abstract
models that describe the various facets of an LDAP directory. RFC 2251 divides an LDAP
directory into two components: the protocol model and the data model.

Information model

 The information model provides the structures and data type necessary for building an LDAP
directory tree. An entry is the basic unit in an LDAP directory. You can visualize an entry as
either an interior or exterior node in the Directory Information Tree (DIT). An entry contains
information about an instance of one or more objectClasses. These objectClasses have certain
required or optional attributes. Attributes types have defined encoding and matching rules that
govern such things as the type of data the attribute can hold and how to compare this data during
a search.

Naming model

The naming model defines how entries and data in the DIT are uniquely referenced. Each entry
has an attribute that is unique among all sibling of a single parent. This unique attribute is called
the relative distinguished name (RDN). You can uniquely identify any entry within a directory
by following the RDNs of all the entries in the path from the desired node to the root of the tree.
This string created by combining RDNs to form a unique name is called the node’s
distinguished name (DN).

Functional model

The functional model is the LDAP protocol itself. This protocol provides the means for
accessing the data in the directory tree. Access is implemented by authentication operations,
query operations (searches and reads), and update operations (writes).

access to *
by self write
 by anonymous auth
 by users read

Security model

The security model provides a mechanism for clients to prove their identity(authentication) and
for the server to control an authenticated client’s access to data(authorization). LDAPv3
provides several authentication methods not available in previous protocol versions. Some
features, such as access control lists, have not been standardized yet, leaving vendors to their
own devices.

LDAP directory service is based on a client-server model. One or more LDAP servers contain
the data making up the directory information tree (DIT). The client connects to servers and asks
it a question. The server responds with an answer and/or with a pointer to where the client can
get additional information (typically, another LDAP server). No matter which LDAP server a
client connects to, it sees the same view of the directory; a name presented to one LDAP server
references the same entry it would at another LDAP server. This is an important feature of a
global directory service, like LDAP.

How to install openldap

Prerequisite software

OpenLDAP Software relies upon a number of software packages distributed by third parties.
Depending on the features you intend to use, you may have to download and install a number of
additional software packages. This section details commonly needed third party software
packages you might have to install. Note that some of these third party packages may depend on
additional software packages. Install each package per the installation instructions provided with
it.

Transport Layer Security

OpenLDAP clients and servers require installation of OpenSSL libraries to provide services.
Though some operating systems may provide these libraries as part of the base system or as an
optional software component, OpenSSL often requires separate installation.

OpenSSL is available from http://www.openssl.org/.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure
detects a usable OpenSSL installation.

Kerberos Authentication Services

OpenLDAP clients and servers support Kerberos-based authentication services. In particular,
OpenLDAP supports the / authentication mechanism using either Heimdal or MIT Kerberos V
packages. If you desire to use Kerberos-based SASL/GSSAPI authentication, you should install
either Heimdal or MIT Kerberos V.

Heimdal Kerberos is available from http://www.pdc.kth.se/heimdal/. MIT Kerberos is available
from http://web.mit.edu/kerberos/www/.

Use of strong authentication services, such as those provided by Kerberos, is highly
recommended.

Simple Authentication and Security Layer

OpenLDAP clients and servers require installation of Cyrus's SASL libraries to provide
services. Though some operating systems may provide this library as part of the base system or
as an optional software component, Cyrus SASL often requires separate installation.

Cyrus SASL is available from http://asg.web.cmu.edu/sasl/sasl-library.html. Cyrus SASL will
make use of OpenSSL and Kerberos/GSSAPI libraries if preinstalled.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure
detects a usable Cyrus SASL installation.

 Database Software

OpenLDAP's slapd(8) primary database backend, , requires Sleepycat Software Berkeley DB,
version 4.2. If not available at configure time, you will not be able build slapd(8) with this
primary database backend.

Your operating system may provide Berkeley DB, version 4.2, in the base system or as an
optional software component. If not, you'll have to obtain and install it yourself.

Berkeley DB is available from Sleepycat Software's download page
http://www.sleepycat.com/download/. There are several versions available. At the time of this
writing, the latest release, version 4.2, is recommended. This package is required if you wish to
use the database backend.

OpenLDAP's slapd(8) LDBM backend supports a variety of data base managers including
Berkeley DB and GDBM. GDBM is available from FSF's download site
ftp://ftp.gnu.org/pub/gnu/gdbm/.

 Threads

OpenLDAP is designed to take advantage of threads. OpenLDAP supports POSIX pthreads,
Mach CThreads, and a number of other varieties. configure will complain if it cannot find a
suitable thread subsystem. If this occurs, please consult the Software|Installation|
Platform Hints section of the OpenLDAP FAQ http://www.openldap.org/faq/.

 TCP Wrappers

slapd(8) supports TCP Wrappers (IP level access control filters) if preinstalled. Use of TCP
Wrappers or other IP-level access filters (such as those provided by an IP-level firewall) is
recommended for servers containing non-public information.

Install openldap

Get the software
You can obtain a copy of the software by following the instructions on the OpenLDAP
download page (http://www.openldap.org/software/download/). It is recommended that new
users start with the latest release
$tar -xvzf openldap-version.tar.gz
$cd openldap-version
$./configure --prefix=/usr --exec-prefix=/usr --libexecdir=/usr/sbin --sbindir=/usr/sbin --
bindir=/usr/sbin --libdir=/usr/lib --oldicludedir=/usr/include --localstatedir=/var/run --
sysconfdir=/etc --enable-shared --with-gnu-ld --enable-debug --with-tls --with-threads --
enable-crypt --enable-cleartext --enable-slapd --enable-slurpd --enable-bdb --enable-local --
enable-passwd --enable-static --enable-FEATURE --with-PACKAGE --enable-syslog -enable-
ldap --with-readline
$ make depend
$make
$ cd tests
$ make
$ su –
Password: <root password>

#cd /tmp/openldap-version
#make install

Edit the configuration File
Use your favourite editor to edit the provided slapd.conf example(usually installed as /
etc/openldap/slapd.conf) to contain BDB database definition of of the form:
database bdb
suffix “dc=<MY-DOMAIN>,dc=<COM>”
rootdn “cn=Manager,dc=<MY-DOMAIN>,dc=<COM>”
rootpw secret
directory /var/openldap-data

Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of
your domain name. For example, afnog.org, use:

database bdb
suffix "dc=afnog,dc=org"
rootdn "cn=Manager,dc=afnog,dc=org"
rootpw secret
directory /var/openldap-data

You should be sure to specify a directory where the index files should be created. You need to
create this directory with appropriate permissions such that slapd can write to it.

#mkdir –p /var/openldap-data
#chmod –R 700 /var/openldap-data

Start SLAPD
You are now ready to start the stand-alone LDAP server, by running the command: slapd .
 To check to see if the server is running and configured correctly, you can run a search against
it with with ldapsearch.

ldapsearch -x -b ‘’ -s base ‘(objectclass=*)’ namingContexts

Note the use of single quotes around command parameters to prevent special characters
from being interpreted by the shell. This should return:

dn:
namingContexts: dc=afnog,dc=org

Add initial entries to your directory

You can use ldapadd to add entries to your LDAP directory. Ldapadd expects input in LDIF
form. We will do it in two steps:

o create an LDIF file

o run ldapadd

Use your favorite editor and create an LDIF file that contains:

dn:dc=afnog,dc=org
objectClass:dcObject
objectClass:organization
o:org COMPANY
dc:org

dn:cn=Manager,dc=afnog,dc=org
objectClass:organizationalRole
cn:Manager

Now you may run ldapadd to insert these entries into your directory.

ldapadd -x -D "cn=Manager,dc=afnog,dc=org" -W -f org.ldif

where org.ldif is the file you create above

See if it works

Now we are ready to verify the added entries are in your directory. You can use any LDAP
client to do this, but our example uses the ldapsearch tool.

ldapsearch -x -b ‘dc=afnog,dc=org’ ‘(objectclass=*)’

This command will search and retrieve every entry in the database. You are now ready to add
more entries using ldapadd or another LDAP client, experiment with various configuration
options, backend arrangements, etc…

documentations:

http://www.openldap.org/doc/admin22/
http://www.openldap.org/doc/admin22/quickstart.html

Install php-ldapadmin

NB: you need apache +php with ldap support

Get the source file of phpldapadmin-0.9.4b from http://phpldapadmin.sourceforge.net/download.php
#mkdir –p /var/www/html/ldap
cd /var/www/html/ldap
tar -xvzf /tmp/phpldapadmin-0.9.4b.tar.gz
mv phpldapadmin-0.9.4b ./phpldapadmin
#cd phpldapadmin
#cp config.php.example ./config.php

Edit config.php file and change the server name, the base, the binddn and bind password
Example

$servers[$i][‘host’] = ‘ldap://localhost’;
$servers[$i][‘base’] = ‘dc=afnog,dc=org’;
$servers[$i][‘port’] = 389;
$servers[$i][‘auth_type’] = ‘config’;
$servers[$i][‘login_dn’] = ‘cn=Manager,dc=afnog,dc=org’;
$servers[$i][‘login_pass’] = ‘secret’;

After changing your config.php file, you can connect with your browser to this address
http://ip_address/ldap/phpldapadmin

Other LDAP clients

 LDAPBROWSER : http://www.iit.edu/~gawojar/ldap/
WEB2LDAP : http://freshmeat.net/projects/web2ldap/
GQ :http://biot.com/gq/

