AfNOG 2006

Track EO:
Unix System Administration

Why use UNIX?

Scalability and reliability

- has been around for many years

= works well under heavy load

Flexibility

- emphasises small, interchangeable components
Manageability

- remote logins rather than GUI

- scripting
Security

- Windows has a long and sad security history
= Unix and its applications are not blameless

Welcome!

* Who are we?
* Timetable and administrivia
* Objectives for the week
= Learn your way around Unix/FreeBSD
- TCP/IP network-based services
= Security
= Upgrading and maintenance

Windows DOES NOT SCALE

OK for 100 mailboxes

But don't try to run 10,000 mailboxes with
standard Microsoft solutions

Remote administration is painful

= It's stilla desktop OS

- Lots of administrative overhead

Spend your entire life installing patches?
Not as stable

Commercial pricing but lousy support
Closed source commercial software is not
necessarily a bad thing

This is YOUR workshop!

* Stop us if we're speaking too fast
« Stop us if you don't understand anything
* Ask lots of questions!

Simplified Unix family tree
(Look at the wall

4.4BSD

Linux

Red Hat

debian (a
gentoo (
othe

Why did we choose FreeBSD?

It's Free!

Optimised for performance on i386 hardware
- NetBSD aims to run on many platforms

= OpenBSD aims to provide enhanced security
Well proven in real-world environments
Excellent packaging system

Industrial strength TCP/IP stack

Is free software really any good?!

* The people who write it also use it
* Source code is visible to all
- The quality of their work reflects on the author
personally
= Others can spot errors and make improvements
* What about support?
~ documentation can be good, or not so good
- mailing lists; search the archives first
- if you show you've invested time in trying to solve
a problem, others will likely help you
- http://www.catb.org/~esr/fags/smart-
questions.html

Why not Linux?

* Lack of centralized documentation
« Lack of tools for performance analysis (gsta?)
* Too many distributions to choose from
= Ubuntu, Gentoo (Debian - not bad)
= SCO, Turbolinux, Mandriva, SuSE, etc.
* Red Hat used to be the de-facto choice for a
reliable, free distribution
= Now it has gone commercial (RHES)
~ Mandriva
- Fedora is "bleeding edge" and has short lifecycle
* Package management s a problem

Is free software really any good?

* Core Internet services run on free software
~ BIND Domain Name Server
~ Apache web server (secure SSL as well)
- Sendmail, Postfix, Exim for SMTP/POP/IMAP
=~ MySQL and PostgreSQL databases
= PHP, PERL, C languages

* Several very high profile end-user projects
- Firefox, original Netscape browser
- OpenOffice
= Thunderbird

Why not Linux cont.

BSD includes the kernel and the userland
utilities in a single source tree

BSD tends to be more "conservative" (except
for debian)

~ emphasises stability and compatibility

- compare: ipfw, ipfwadm, ipchains, iptables...
Excellent TCP/IP stack

- Ask Microsoft, they used it for Windows 2000
FreeBSD packaging system allows for
flexibility

- Packages (pkg) tend to be more conservative
- Ports are more generally more current

First topics:

* Unix birds-eye overview
* Partitioning
* FreeBSD installation

Key components of the Unix OS

Kernel * Inter-process
Shell communication
User processes * Security model
System processes * Filesystem layout

Shell

* Command line interface for executing

programs

~ DOS/Windows equivalent: command.com or
command.exe
hoice of similar but slightly different shells
sh: the "Bourne Shell". Standardised in POSIX

= csh: the "C Shell". Not standard but includes
command history

= bash: the "Bourne-Again Shell". Combines POSIX
standard with command history. But distributed
under GPL (more restrictive than BSD licence)

User processes

* The programs that you choose to run
* Frequently-used programs tend to have short
cryptic names
list files
opy file
- "rm" = remove (delete) file
Lots of stuff included in the base system
~ editors, compilers, system admin tools
Lots more stuff available to install too
~ packages / ports

Kernel

* The "core" of the operating system

« Device drivers
~ communicate with your hardware
- block devices, character devices, network

devices, pseudo devices

Filesystems
- organise block devices into files and directories
Memory management
Timeslicing (multiprocessing)
Networking stacks - esp. TCP/IP
Enforces security model

System processes

Programs that run in the background; also

known as "daemons”

Examples:

- cron: executes programs at certain times of day

- syslogd: takes log messages and writes them to
files

~ inetd: accepts incoming TCP/IP connections and
starts programs for each one

= sshd: accepts incoming logins

~ sendmail (other MTA daemon): accepts incoming
mail

Inter-process communication

* Pipes: easy to use!
-grep hostnane /etc/* | less
* Other, more specialised mechanisms
- fifos (named pipes)
- sockets
= System V IPC and shared memory

I.E. through the filesystem or over the network

Key differences to Windows

Unix commands and filenames are CASE-
SENSITIVE

Path separator: / for Unix, \ for Windows
Windows exposes a separate filesystem tree
for each device

- Afoo.txt, C:\bar.txt, E:\baz.txt

~ device letters may change, and limited to 26
Unix has a single 'virtual filesystem' tree

- /bar.txt, /mnt/floppy/foo.txt, /cdrom/baz.txt

— administrator choses where each FS is attached

Security model

Numeric IDs

= userid (uid 0 = "root", the superuser)

= group id

- supplementary groups

Mapped to names

- Jetc/passwd, /etc/group (plain text files)

- Jetc/pwd.db (fast indexed database)

Suitable security rules enforced

~ e.g. you cannot kill a process running as a
different user, unless you are "root"

Standard filesystem layout

/bin essential binaries

/boot kernel and modules

/dev device access nodes

letc configuration data
letc/defaults configuration defaults
letc/rc.d startup scripts

/home/ user name user's data storage

Nlib essential libraries

Isbin essential sysadmin tools

/stand recovery tools

/tmp temporary files

lusr progs/applications

Ivar data files (logs, E-mail

messages, status files)

Filesystem security

Each file and directory has three sets of

permissions

- For the file's uid (user)

- For the file's gid (group)

= For everyone else (other)

Each set of permissions has three bits: rwx

= File: r=read, w=write, x=execute

— Directory: r=list directory contents,
w=create/delete files within this directory, x=enter
directory

Example: brian wheel rwxr-x---

Standard filesystem layout (cont)

usr
Jusr/bin binaries
Jusr/lib libraries
Jusr/libexec daemons
lusr/shin sysadmin binaries
Jusr/share documents
lusr/src source code
lusr/locall.. 3rd party applications
lusr/X11R6/.. graphical applications
Ivar
Ivar/log log files
Ivar/mail mailboxes
Ivar/run process status
Ivar/spool queue data files
Ivar/tmp temporary files

Why like this?

* It's good practice to keep /usr and /var in
separate filesystems in separate partitions
- So if pvar fills up, the rest of the system is

unaffected

- So if Jusr or /var is corrupted, you can still boot up
the system and repair it

* That's why we have a small number of
essential tools in /bin, /sbin; the rest go in
Jusr/bin and /usr/sbin

« Third-party packages are separate again
- /ust/local/bin, /usr/local/sbin, /usr/local/etc ...

Some reminders about PC
architecture

* When your computer turns on, it starts a
bootup sequence in the BIOS

* The BIOS locates a suitable boot source (e.g.
floppy, harddrive, CD-ROM, network)

* Disks are devided into 512-byte blocks

* The very first block is the MBR (Master Boot
Record)

* The BIOS loads and runs the code in the
MBR, which continues the bootup sequence

A note about devices

* e.g. /dev/ad0 = the first ad (ATAPI/IDE disk)
* In FreeBSD, entries for each device under
/dev are created dynamically
= e.g. when you plug in a new USB device
* Some "devices" don't correspond to any
hardware (pseudo-devices)
= e.g. /dev/null is the "bit bucket"; send your data
here for it to be thrown away

Partitioning

The MBR contains a table allowing the disk to
be divided into (up to) four partitions

Beyond that, you can nominate one partition
as an "extended partition" and then further
subdivide it into "logical partitions”

FreeBSD has its own partitioning system,
because Unix predates the PC

FreeBSD recognises MBR partitions, but calls
them "slices" to avoid ambiguity

Any questions?

FreeBSD partitions

* Partitions (usually) sit within a slice

« Partitions called a,b,c,d,e,f,g,h

* CANNOT use 'c'
— for historical reasons, partition 'c' refers to the

entire slice

By convention, 'a' is root partition and 'b' is
swap partition
'swap' is optional, but used to extend capacity
of your system RAM

Simple partitioning: /dev/ad0

MBR Single slice /dev/ad0s1

ar tmp

/ (root partition) adOsla 256MB
swap partition adOslb ~ 2 x RAM

Ivar adOsld 256MB (+)

/tmp adOsle 256MB

usr adOslf rest of disk

Core directory refresher

o (/boot, /bin, /sbin, /etc, maybe /tmp)
* var (Log files, spool, maybe user mail)
* Jusr (installed software and home dirs)
* Swap (virtual memory)

* ffmp (May reside under ‘")

Don't confuse the the “root account” (/root) with
the “root” partition.

'Auto’ partition does this:

Small root partition

= this will contain everything not in another partition
- /boot for kernel, /bin, /sbin etc.

A swap partition for virtual memory

Small /tmp partition

- so users creating temporary files can'tfill up your
root partition

Small /var partition
Rest of disk is /usr
- Home directories are /usr/home/<username>

Note...

« Slicing/partition is just a logical division

« If your hard drive dies, most likely everything
will be lost

* If you want data security, then you need to set
up mirroring with a separate drive
~ Another reason to keep your data on a separate

partition, e.g. /u

- Remember, “rm -rf”on a mirror works very well.

Issues

* /var may not be big enough

« Jusr contains the OS, 3rd party software, and
your own important data
= If you reinstall from scratch and erase /usr, you

will lose your own data

* So you might want to split into /usr and /u
- Suggest 4-6GB for /usr, remainder for /u

* Some people prefer a ramdisk for /tmp

stab: 64MB r ant|

sui d, nodev, noat i ne

Summary: block devices

* IDE (ATAPI) disk drives
- /dev/ad0
- /dev/adl ...etc
* SCSI or SCSl-like disks (e.g. USB flash)
- /dev/da0
- /dev/dal ...etc
IDE (ATAPI) CD-ROM
- /dev/acd0 ...etc
Traditional floppy drive
- /dev/fd0
etc.

Summary Any questions? Installing FreeBSD

* Slices * BSD Partitions * Surprisingly straightforward

- /dev/ad0s1 - /dev/adOsla * Boot from CD or floppies, runs "sysinstall"
- /dev/ad0s2 - /dev/adOs1b « Slice your disk

- /dev/ad0s3 - /dev/ad0s1d - Can delete existing slice(s)
- /dev/ad0s4 - /dev/ad0s2a - Create a FreeBSD slice
* Defined in MBR - /dev/ad0s2b Partition
. ‘\'Nhaf(PC t]eads call C’ (etgeelvst Choose which parts of FreeBSD distribution
partitions onventions: you want, or "all"
Install from choice of media
- 0 TR IEY - CD-ROM, FTP, even a huge pile of floppies!

Finding more information

Our reference handout

— a roadmap!

man pages

- esp. when you know the name of the command

www.freebsd.org

- handbook, searchable website / mail archives

"The Complete FreeBSD" (O'Reilly)

comp.unix.shell FAQ

- http://www.fags.org/faqs/
by-newsgroup/comp/comp.unix.shell.html

STFW (Search The Friendly Web)

