Domain Name System (DNS)

Ayitey Bulley abulley@ghana.com

AfNOG-2003

Objectives

- Describe why we need name to address mappings and what was wrong with HOSTS.TXT
- · Describe the client-server model of DNS
- Setup and test a resolver on a UNIX machine
- List and describe resource records (RR) a client would be interested in
- Use dig tool to resolve names with more detail

AfNOG-2003

Why Names?

- The Internet infrastructure depends on IP addresses
- Machines communicate with each other via IP addresses
- However human beings can remember names better than numbers
- A single file mapping name to IP address was created (HOSTS.TXT)

AfNOG-2003

HOSTS.TXT

- Maintained by SRI's NIC and distributed from a single host
- Administrators emailed changes to the NIC and periodically downloaded the current HOSTS.TXT
- Changes were compiled into a new HOSTS.TXT once or twice a week
- As the network grew this scheme became impracticable.

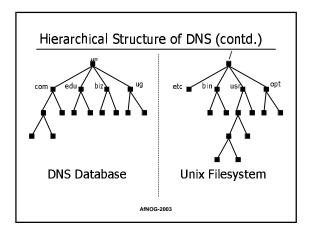
AfNOG-2003

What was wrong with HOSTS.TXT

- Traffic and load
- Name collisions
- Consistency
- Single point of editing and maintenance
- Did not scale well
- The need for a more scalable system/scheme, hence DNS

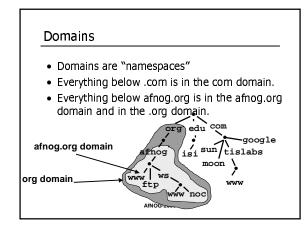
AfNOG-2003

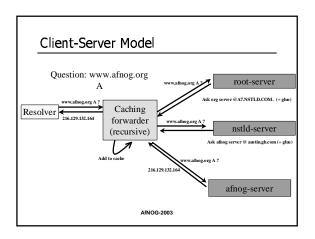
What is DNS?

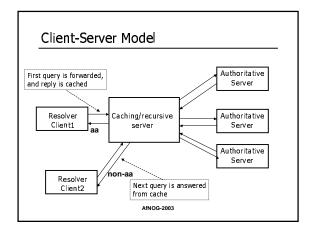

- DNS is a distributed database
- Allows local control of segments of the overall database
- Employs a client-server architecture
- Robustness and performance achieved through replication and caching
- Name servers constitute the server half of the client-server mechanism
- Resolvers constitute the client half of the client-server mechanism
- Structure of the DNS database is hierarchical

AfNOG-2003

Hierarchical Structure of DNS


- Very similar to the structure of the UNIX file system
- Pictured as an inverted tree with root node at the top
- Each node in the tree has a text label
- The null label "" is reserved for the root node
- Root node is written as a single dot (.)


AfNOG-2003



Hierarchical Structure of DNS (contd.) ws1 ws2 ftp www disi sun tipe isi tislabs New branches at the 'dots' google No restriction to the amount of branches.

Hierarchical Structure of DNS (contd.) • Hostnames are globally unique - E.g. pc1.t1.ws.afnog.org and pc1.t2.ws.afnog.org • Name space is administered in zones - E.g. afnog.org and ws.afnog.org can be administered by different organizations

Types of Nameservers

- · Caching-Only Server
 - Non-authoritative for any zone except 0.0.127.inaddr.arpa
 - Resolves recursively by querying authoritative nameservers
- Authoritative Servers
 - Master (Primary)
 - Slave (Secondary)
 - Can be authoritative for one or more domains

AfNOG-2003

Exercise 1

- In this exercise we will be testing name resolution using:
 - ping and a browser
 - and by configuring the local resolver on your PCs (/etc/resolv.conf)
- Please refer to Exercise 1 in the handouts given to you.

AfNOG-2003

Client Resolver Lookups

- Possible queries from a client to a nameserver are:
 - Name to IP Address (A)
 - browser
 - Name to Mail exchanger (MX)
 - Mail Server (MTA) e.g. Exim
 - IP Address to Name (PTR) [Reverse DNS]
 - Logging of incoming connections (apache logs)
 - Alias to Name (CNAME)
 - Other resource record (RR) types
 - SOA, NS (Mainly Server to Server)

AfNOG-2003

Client Resolver Lookups (contd.)

- Possible responses from a nameserver to a client are:
 - Positive answer
 - Negative answer (Name does not exist)
 - Server Fail (Could not find any answer)

AfNOG-2003

Client Utilities for Testing DNS

- BIND comes with utilities for testing and troubleshooting nameserver issues. Some of these tools are:
 - nslookup
 - dig
- Most client programs use the local resolver
 - E.g. ping, browsers etc.
- In this workshop we will focus on the dig and ping utilities.

AfNOG-2003

The BIND dig utility

Syntax

dig [@server] domain [q-type] [other options]

- Server The server you want to use to resolve the query (defaults to servers listed in /etc/resolv.conf)
- Domain a name in the Domain Name System
- q-type is one of (a,any,mx,ns,soa,hinfo,axfr,txt,...) [default: a]

• Examples

- # dig @81.199.109.1 ws.afnog.org a
- # dig @ns.tl.ws.afnog.org ws.afnog.org a
- # dig @noc.ws.afnog.org -x 81.199.110.100
- # man dig

AfNOG-2003

Question

• From the output from the last example, what is the default query type?

AfNOG-2003

Understanding output from dig

- Queries using the dig utility outputs a lot of information, however the most important for us are
 - Status
 - Flags
 - Answer Section
 - Authority Section
 - Additional Section
 - TTL
 - Total query time
 - "From To Server" Section

AfNOG-2003

ns# dig 081.199.110.100 www.gouv.bj a ; (C) server found) ; (1 server found) ; (1 server found) ; (2 server found) ; (2 server found) ; (2 server found) ; (3 server found) ; (3 server found) ; (4 server found) ; (5 server found) ; (5 server found) ; (5 server found) ; (5 server found) ; (6 server found) ; (6 server found) ; (6 server found) ; (6 server found) ; (7 server found) ; (8 server found) ; (9 server found) ; (1 server) ; (1 server found) ; (1 server) ; (1 server) ; (1 server) ; (1 serve

Exercise 2

- In this exercise we will be using the dig utility to resolve domain names
 - dig using your local resolver
 - dig using another caching server
 - dig for reverse lookups
 - dig for a non-existent domain

AfNOG-2003

Best Practices

- Choose caching nameservers close by you for your resolver
- Select at least two (2) caching nameservers for your resolver (redundancy)
- Use search lists in the resolver for non-FQDN

AfNOG-2003