UNIX[™]/Linux Overview

Unix/IP Preparation Course May 29, 2011 Dar es Salaam, Tanzania

UNIX/Linux History

FreeBSD Timeline

Image courtesy of Wikipedia

Unix and Linux

Are they the same?

Yes, at least in terms of operating system interfaces Linux was developed independently from Unix Unix is much older (1969 vs. 1991)

Scalability and reliability

Both scale very well and work well under heavy load (this is an understatement ⁽¹⁾)

Flexibility

Both emphasize small, interchangeable components

Manageability

Remote logins rather than GUI (ssh) Configuration is done with *plain-old-text*™ Scripting is integral

Security

Due to modular design has a reasonable security model All software has security holes

The Unix System Simplified

The Unix System More Detail

The Kernel

- The "core" of the operating system
- Contains device drivers
 - Communicate with your hardware
 - Block devices (physical media hard drive, CD, RAM)
 - Character devices (keyboards, mice, terminals, modems)
 - Network devices (network cards)
 - Pseudo devices (/dev/null, /dev/random)
- Filesystems
 - Organise block devices into files and directories
 - ufs2, ext2, ext3, ext4, reiserfs, jfs, zfs

The Kernel continued

Memory management

- Real, Virtual and paging algorithms Timeslicing (multitasking)

- Resource allocation to processes

Networking stacks - esp. TCP/IP

- Packets traverse the kernel

Enforces security model

- Does this user have privileges
- Numeric userid identifiers ("uid")
- id 0 is "special" root

Shells

- Command line interface for executing programs
- Also programming languages for scripting - Windows equivalent: batch files or newer windows scripting language
- Choice of similar but slightly different shells
 - sh: the "Bourne Shell". Standardised in POSIX
 - csh: the "C Shell". Not standard, but includes command history
 - bash: the "Bourne-Again Shell". Combines POSIX standard with command history.
 - Others: ksh, tcsh, zsh

User processes

The programs that you choose to run

Frequently-used programs tend to have short cryptic names (why?)

"ls" = list files "cp" = copy file "rm" = remove (delete) file

Lots of stuff included in most base systems Editors, compilers, system admin tools Lots more stuff available to install as well Thousands and thousands of packages

System processes

Programs that run in the background; also known as "daemons" → 🎻 👘 "sparky"

Examples:

cron: Executes programs at certain times of day
 syslogd: Takes log messages and writes them to files
 inetd: Accepts incoming TCP/IP connections and starts programs for each one
 sshd: Accepts incoming logins
 sendmail (other MTA daemons like Exim, Postifx): accepts incoming mail (smtp)

Security model

Numeric IDs

user id (uid 0 = "*root*", the superuser) group id supplementary groups

Mapped to names in plain text files

/etc/passwd /etc/group

Suitable security rules enforced

e.g. you cannot kill a process running as a different user, unless you are "*root*"

Core directory refresher

/	(/boot, /bin, /sbin, /etc, maybe /tmp,
/var	(Log files, spool, maybe user mail)
/usr	(Installed software packages)
/tmp	(May reside under "/")

Don't confuse the the "root account" (/root) with the "root" ("/") partition.

'Auto Defaults' Partition FreeBSD

During FreeBSD installation you can choose this option. It creates the following:

- "/" Small Root partition
 - this will contain everything not in another partition /bin, /sbin, /usr etc.
- A swap partition for virtual memory
- /var
 - For "variable" files, such as logs, mail spools, etc.
- /tmp
 - Where temporary files are located
- /usr
 - /usr/home contains user directories. This is the largest partition created. In Linux this is just /home.

'Auto Defaults' Partition Linux

Many/most Linux distributions will default to:

- "/" Almost every here. Very large partition.
 - this will contain everything not in another partition /bin, /sbin, /usr etc.
- A swap partition for virtual memory
- /boot
 - Contains the linux kernel image(s) and associated configuration and bootstrapping files.

Partitioning Issues

/var may not be big enough /usr contains OS utilites, third-party software /usr/home contains your own important data If you reinstall from scratch and erase /home, you will lose your own data

- Everything in "/" is now more common due to RAID. Why? Valid?
- /tmp?
- Others?
- How much *swap* should you define?

Note...

Partitioning is just a logical division

- If your hard drive dies, most likely *everything* will be lost.
- If you want data security, then you need to set up mirroring with a separate drive. Another reason to keep your data on a separate partition, e.g. /u Remember, "rm -rf" on a mirror works *very* well.
- Or, as always "Data Security" <==> Backup

Software Installation FreeBSD

Software management in FreeBSD

- Install from source
- Install from binary
- Compile from source using a port
- Use a wrapper tool, such as *portinstall*.
- Install pre-built FreeBSD packages using pkg_*

You can keep the source tree local and up-to-date. This is known as the *ports collections*. A number of tools to do this, including *portsnap*.

Software Installation Linux

Two major packaging systems:

- Redhat Package Manager → RPM
- Debian Packages → DPKG

Both have wrapper tools to make them easier

to use:

- rpm wrapped with "yum"
- dpkg wrapped with "apt" and "aptitude"

Both use repositories.

Linux has the other usual suspects as well:

- Install from source
- Install from binary

Most Linux users consider the Debian Packaging system, dpkg,

to be superior to the Redhat Package Manager, rpm.

System Startup FreeBSD

Startup scripts in FreeBSD

- /etc/rc.d system startup scripts
- /usr/local/etc/rc.d third-party startup scripts

Controlling services

- In /etc/defaults/rc.conf initial defaults
- /etc/rc.conf override settings here

System Startup Linux

Several variants and new systems, such as *upstart*, are used. But, commonly:

- /etc/rc.d or
- /etc/init.d/rc.d system startup scripts
- /etc/rc.local customize startup

Controlling services

- In /etc/ and
- /etc/default

Administration

The use of the *root* account is discouraged and the *sudo* program should be used to access root privileges from your own account instead.

- You can do *a "buildworld"* to move between major and minor releases (FreeBSD).
- You can use *apt* and/or *yum* to move between many major and minor Linux releases.

Important Reads

- man builtin
- man hier
- man man
- man ports
- man rc.conf

And, "man any_unknown_command" when you are in doubt.

There's More

The FreeBSD Handbook

http://www.freebsd.org/handbook/

Some Web Resources

http://www.freebsd.org http://forums.freebsd.org http://distrowatch.com/table.php?distribution=freebsd http://www.freshports.org/ http://wiki.freebsd.org http://en.wikipedia.org/wiki/FreeBSD

GIYF (Google Is Your Friend)

Packages & Exercises

We'll reinforce some of these concepts using exercises...